WOOD TURTLE (Glyptemys insculpta)

Conservation Plan for Minnesota

Cover Images

Top left, bottom: Gaea Crozier, Minnesota Department of Natural Resources. **Top right:** Jason Naber, Emmons and Olivier Resources.

TABLE OF CONTENTS

LIST	OF FIGURESiii
LIST	OF TABLESiii
ACK	NOWLEDGEMENTSiv
2	INTRODUCTION AND BACKGROUND INFORMATION
2.1	CONSERVATION PLAN OBJECTIVE
2.2	SPECIES DESCRIPTION
2.3	STATUS, DISTRIBUTION, AND TRENDS ACROSS RANGE
2.4	STATUS, DISTRIBUTION, AND TRENDS ACROSS RANGE IN MINNESOTA
2.5	ECOLOGY AND LIFE HISTORY8
3	PAST AND CURRENT CONSERVATION EFFORTS IN MINNESOTA
3.1	SURVEYS AND MONITORING
3.2	RESEARCH
3.3	MANAGEMENT AND PROTECTION
4	ISSUES, GOALS, AND STRATEGIES
4.1	HABITAT22
4.2	ADULT MORTALITY, REMOVAL, AND SUB-LETHAL IMPACTS26
4.3	JUVENILE RECRUITMENT
4.4	KNOWLEDGE GAPS
4.5	PARTNERSHIPS
5	IMPLEMENTATION PLAN
5.1	ISSUE: HABITAT
5.2	ISSUE: ADULT MORTALITY, REMOVAL, AND SUB-LETHAL IMPACTS
5.3	ISSUE: JUVENILE RECRUITMENT
5.4	ISSUE: KNOWLEDGE GAPS47
5.5	ISSUE: PARTNERSHIPS
LITE	RATURE CITED59

LIST OF APPENDICES

LIST OF APPEN	DICES
Appendix A	Northeast Work Group Worksheets
Appendix B	Southeast Work Group Worksheets
Appendix C	Northeast River Information
Appendix D	Southeast River Information

LIST OF FIGURES

Figure 1. Global Wood Turtle distribution (NatureServe 2008, MNDNR 2018)	4
Figure 2. Wood Turtle distribution in Minnesota by county (Moriarty and Hall 2014)	7
gure 1. Global Wood Turtle distribution (NatureServe 2008, MNDNR 2018)	
Figure 5. Female and male habitat use by forest age class for one Wood Turtle population in northeast Minnesota (Berkeland et al. 2019, Crozier 2020)	
LIST OF TABLES	
•	
Table 2. Habitat Strategies, Sub-strategies, and Sub-issues	25
Table 3. Adult Mortality, Removal, and Sub-lethal Impacts Strategies, Sub-strategies, and Sub-issues	29
Table 4. Juvenile Recruitment Strategies, Sub-strategies, and Sub-issues	32
Table 5. Wood Turtle knowledge gaps identified by the Wood Turtle Planning Team	33
Table 6. Partnership Sub-strategies	35
Table 7. List of potential and existing partners	37
Table 8. Implementation Plan for the River System Management strategy	38
Table 9. Implementation Plan for the Site Habitat strategy	40
Table 10. Implementation Plan for the Human Induced Mortality strategy	42
Table 11. Implementation Plan for the Natural/Unknown Mortality strategy	43
Table 12. Implementation Plan for the Nest Site Level strategy	44
Table 13. Implementation Plan for the Juvenile Survival strategy	46
Table 14. Implementation Plan for the Habitat strategy	47
Table 15. Implementation Plan for the Adult Mortality strategy	49
Table 16. Implementation Plan for the Juvenile Recruitment strategy	51
Table 17. Implementation Plan for the Survey Protocol strategy	53
Table 18. Implementation Plan for the Population Status and Trends strategy	55
Table 19. Implementation Plan for the Outreach strategy.	56
Table 20. Implementation Plan for the Enhance Partnerships strategy.	57

ACKNOWLEDGEMENTS

Wood Turtle Planning Team

- Gaea Crozier, MNDNR
- Carol Hall, MNDNR
- Krista Larson, MNDNR
- Jeff LeClere, MNDNR
- Tim Lewis, University of St. Thomas
- Mike Majeski, EOR Inc.
- Tricia Markle, Minnesota Zoo
- Jimmy Marty, EOR Inc.
- John Moriarty, Three Rivers Park District
- Jason Naber, EOR Inc.
- Seth Stapleton, Minnesota Zoo

Northeast Work Group

- Gaea Crozier, MNDNR
- Jeff Hines, MNDNR
- Jason Naber, EOR, Inc.
- Dan Ryan, US Forest Service
- Mike Schrage, Fond du Lac Reservation

Southeast Work Group

- Carol Hall, MNDNR
- Krista Larson, MNDNR
- Jeff LeClere, MNDNR
- Tricia Markle, Minnesota Zoo
- Jason Naber, EOR Inc.
- Barb Perry, MNDNR
- Russell Smith, MNDNR
- Seth Stapleton, Minnesota Zoo
- Michael Worland, MNDNR

Plan Reviewers

- TBD

1. EXECUTIVE SUMMARY

The Wood Turtle (*Glyptemys insculpta*) is a state-threatened species in Minnesota and was identified in Minnesota's Wildlife Action Plan (2015-25) as a species in need of a statewide management plan. This document, the Minnesota Wood Turtle Conservation Plan, identifies issues, 10-year goals, prioritized strategies, and targeted implementation activities. The purpose of this plan is to identify strategies to start moving the species toward recovery.

The Minnesota Department of Natural Resources (MNDNR) Nongame Wildlife Program formed a Wood Turtle Planning Team composed of biologists with Wood Turtle expertise to guide development of the conservation plan. The MNDNR also coordinated a Northeast Work Group and a Southeast Work Group to address region-specific implementation planning and prioritization for northeast (including central) and southeast Wood Turtle populations. Emmons and Olivier Resources, Inc. (EOR) was contracted to coordinate the plan development process and write the plan with regular input meetings and feedback from the Planning Team.

The Planning Team established an overarching conservation goal for the Wood Turtle in Minnesota:

Conservation Goal: To maintain and enhance Wood Turtle populations throughout their range in Minnesota with the goal of having viable populations.

The Planning Team identified five issues affecting the Conservation Goal: 1) habitat, 2) adult mortality, removal, and sub-lethal impacts, 3) juvenile recruitment, 4) knowledge gaps, and 5) partnerships. The Planning Team subsequently developed broad, statewide 10-year goals that address each issue, with specific strategies and sub-strategies to progress toward the 10-year goals.

The regional Work Groups used the strategies and sub-strategies developed by the Planning Team to detail region-specific targeted implementation activities, milestones, tracking metrics, prioritization, and target start dates for each sub-strategy. An Implementation Plan summarizing this information was developed collaboratively by the Planning Team and Work Groups. It will be the primary means of planning, implementing, and tracking the strategies and activities identified in the plan.

Tracking performance toward targets is an important step to the Implementation Plan. Performance toward targets will be assessed every two years by documenting completed activities. After five years, work to date will be evaluated with potential for re-prioritization, timeline adjustment, and additional activities.

Location information pertaining to threatened and endangered species is very sensitive. Place names have been replaced throughout the document in consideration of data sensitivity.

The location data for rare species identified under Minnesota's Endangered Species Law (Minnesota Statutes 84.0895) are considered non-public data under M.S. 84.0872 and should not be duplicated, publicized, or shared with others.

2. INTRODUCTION AND BACKGROUND INFORMATION

Scientific name: Glyptemys insculpta
Synonym: Clemmys insculpta

Common name: Wood Turtle

Category: Reptile Family: Emydidae

NatureServe global status: G3, vulnerable
IUCN global status: Endangered
NatureServe state status: S2, imperiled
CITES protection: Appendix II

State legal status: State threatened

Minnesota Rules: Chapter 6134, listed Wood Turtle as "MN threatened" since 1984

Legal citation: Minnesota Statute 84.0895

2.1. CONSERVATION PLAN OBJECTIVE

The Minnesota Wood Turtle Conservation Plan was developed to identify conservation strategies for the Wood Turtle in Minnesota. Minnesota's Wildlife Action Plan (2015-25) identified the Wood Turtle as a species in need of a statewide management plan. The Minnesota Department of Natural Resources (MNDNR) Nongame Wildlife Program formed a Planning Team composed of biologists with Wood Turtle expertise to develop the plan. The Conservation Plan identifies issues, 10-year goals, prioritized conservation strategies, and targeted implementation activities. This plan is different from a recovery plan in that it does not identify targets for recovery and delisting of the Wood Turtle. Rather, the strategies identified in the Conservation Plan will start moving the species toward recovery and can be used to inform a future recovery plan.

2.2. SPECIES DESCRIPTION

The Wood Turtle is a medium sized turtle with an adult carapace (upper shell) length averaging between 14-20 centimeters (Moriarty and Hall 2014, Powell et al. 2016). Observations of adults measuring 25 centimeters and above have been reported in northeastern Minnesota populations (Naber and Majeski 2010, Moriarty and Hall 2014). The Wood Turtle is distinguished by its broad, rugged carapace with raised, irregularly shaped pyramidal scutes (plates forming the upper and lower shells) and a central keel. Carapace color varies from brown to gray to tan; scutes of some individuals occasionally include yellow rays arranged in a sunburst pattern. The plastron (lower shell) is yellow with black blotches on the outer part of each scute. Dorsal skin coloring is brown and the underside of the neck, throat, and forelegs are generally yellow in Minnesota populations; coloration varies from yellow to orange to red across the Wood Turtle range. Hatchlings are drab, while juveniles may be colorful. Hatchling shells are circular, nearly flat, and are greenish-gray in color. Differences in appearance between adult sexes include size, coloring, and shape. Males are generally 7-10 percent larger than females with brighter coloring, more concave plastrons, and longer, thicker tails.

2.3. STATUS, DISTRIBUTION, AND TRENDS ACROSS RANGE

2.3.1 Status

Though the Wood Turtle is not a federally listed species, it is widely considered a species at risk and is under consideration for federal listing in 2023. The Wood Turtle is designated as globally endangered by the International Union for Conservation of Nature (IUCN) (van Dijk and Harding 2011). It is ranked DRAFT Wood Turtle Conservation Plan

Page | 2

as vulnerable both globally (G3), and nationally (N3) in the United States (updated 2010) and Canada (updated 2016) (NatureServe 2019). Of the 22 subnational jurisdictions within the Wood Turtle range, it is ranked as imperiled in seven and critically imperiled in two* (**Table 1**; NatureServe 2019). International trade of the Wood Turtle is legal but strictly regulated according to Appendix II of the Convention on International Trade in Endangered Species (CITES) (CITES 2017).

Table 1: Wood Turtle subnational conservation ranks (NatureServe 2019) and legal status.

Jurisdiction	NatureServe S-Rank	Legal Status		
District of Columbia	SH - Possibly Extirpated	Not Listed		
Iowa	S1 - Critically Imperiled	Endangered		
Ohio*	S1 - Critically Imperiled	Not Listed		
Michigan	S2 - Imperiled	Special Concern		
Minnesota	S2 - Imperiled	Threatened		
New Jersey	S2 - Imperiled	Threatened		
Nova Scotia	S2 - Imperiled	Threatened		
Ontario	S2 - Imperiled	Endangered		
Quebec	S2 - Imperiled	Threatened		
Rhode Island	S2 - Imperiled	Species of Concern		
Virginia	S2 - Imperiled	Threatened		
New Brunswick	S2S3 - Imperiled/Vulnerable	Threatened		
Connecticut	S3 - Vulnerable	Special Concern		
Massachusetts	S3 - Vulnerable	Special Concern		
New Hampshire	S3 - Vulnerable	Special Concern		
New York	S3 - Vulnerable	Special Concern		
Vermont	S3 - Vulnerable	Special Concern		
West Virginia	S3 - Vulnerable	Special Concern		
Wisconsin	S3 - Vulnerable	Threatened		
Pennsylvania	S3S4 - Vulnerable/Apparently Secure	Not Listed		
Maine	S4 - Apparently Secure	Special Concern		
Maryland	S4 - Apparently Secure	Not Listed		

^{*}The Wood Turtle is not considered native in Ohio and is known only from a couple of specimens (ODNR 2019).

2.3.2 Distribution

Wood Turtles occur in 17 states and four provinces within the eastern United States and Canada, with recent isolated observations in the District of Columbia (District Department of the Environment 2015). The distribution ranges northeast to southwest along the Atlantic coast from Nova Scotia and New Brunswick to Maryland, Virginia, and West Virginia, with the range extending west to eastern Minnesota and northeastern Iowa (**Figure 1**; NatureServe 2019). Though the distribution covers a large area, the known area of occupancy is discontinuous and is estimated to be much smaller than implied by the map (Environment Canada 2016).

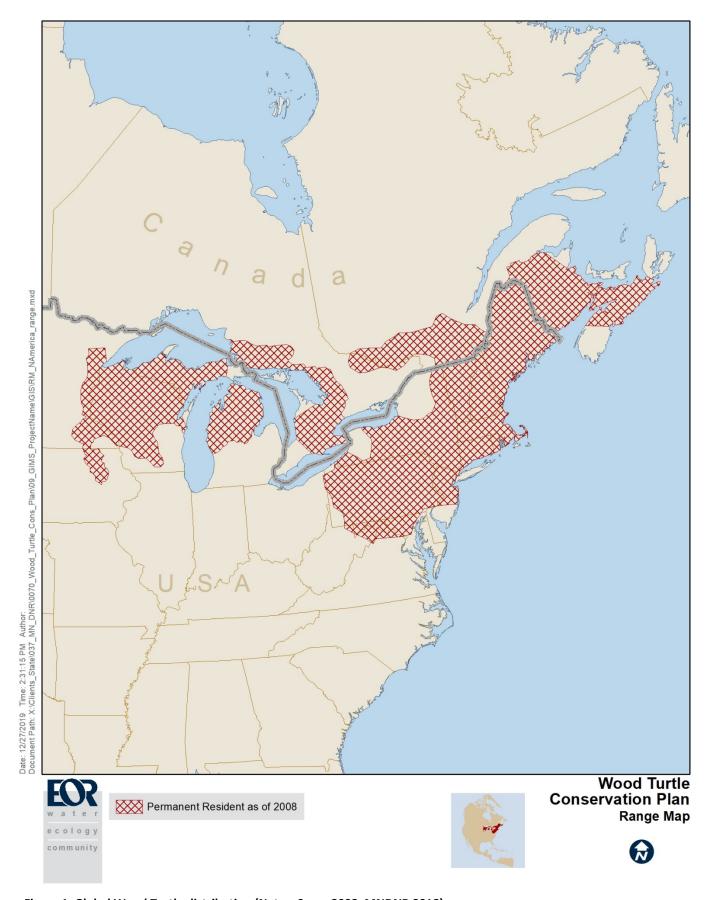


Figure 1. Global Wood Turtle distribution (NatureServe 2008, MNDNR 2018).

2.3.3 Trends

Generally, Wood Turtle populations are considered in decline throughout their range, although quantitative population trends are limited to a few local populations. Most current populations are considered small, isolated, and at risk of extirpation. In Iowa, the Wood Turtle population is small and lacks recruitment, but is relatively diverse and did not show evidence of bottleneck effect (Spradling et al. 2010). Population declines at three rivers in Michigan were inferred from genetic analyses based on effective breeding size, though the study detected no evidence of bottleneck effect and little evidence of inbreeding (Willoughby et al. 2013). Conversely, the same Michigan population increased by an average of 2-3 percent annually based on estimates from an 18-year mark-recapture study (Schneider at al. 2018). These studies of the same population using different methods illustrate the challenge of documenting long-term trends in slow-breeding populations such as Wood Turtles. In Canada, the number of adults is estimated to be declining at a rate of >10 percent in three generations (COSEWIC 2007). Of 13 stream populations assessed in Canada, two remained stable and 11 exhibited decline based on quantitative analysis and expert opinion (Environment Canada 2016). No estimates exist for the overall United States population; the Canadian Wood Turtle population is estimated between 6,000 and 12,000 individuals (COSEWIC 2007).

2.4. STATUS, DISTRIBUTION, AND TRENDS ACROSS RANGE IN MINNESOTA

2.4.1 Status

The Wood Turtle was designated a threatened species in Minnesota in 1984. It is legally protected under Minnesota's Threatened and Endangered Species statute (84.0895) and is a Species in Greatest Conservation Need in the state.

2.4.2 Distribution

Within Minnesota, the Wood Turtle's range covers the eastern portion of the state (**Figure 2**). Historical information on Wood Turtle distribution in the state is lacking. Observations of Wood Turtles are recorded in 16 counties, with populations primarily concentrated in the northeast within the Northeast D River watershed (northeast region) and in the southeast within the Southeast B River drainages (southeast region) (Moriarty and Hall 2014). There are four main populations of Wood Turtles in the northeast region and one apparently viable population in the southeast region. Wood Turtle populations within Minnesota extend across state boundaries, with populations shared by Wisconsin in the northeast and Iowa in the southeast. The Conservation Plan is considering the northeast and southeast regions separately due to the different needs of populations based on regional land use and respective population sizes.

2.4.3 Trends

Records of Wood Turtle occurrence in Minnesota date back to the 1930s based on reports included in the Minnesota Natural Heritage database, with formal surveys first initiated in the 1980s. The largest concentration of Wood Turtle populations occurs in the northeast region, whereas the southeast populations are comparatively small (Hamady and Hall 2011). Information is lacking on populations within the central part of the state.

Population trends for Wood Turtles in Minnesota indicate reason for concern. Observational data for some populations show a concerning decrease in the number of turtles being caught during surveys. Some populations are dominated by older adult turtles with little evidence of juvenile recruitment, suggesting that these populations may be declining. Overall, populations are generally small, isolated, and at risk for extirpation.

Limited population trends exist for the state, but recent efforts quantified trends for select populations.

Changes in a population in the northeast were examined by comparing surveys conducted in 1990 and 2015, using population monitoring data from 1997-2014, and performing a population reconstruction on almost 30 years of mark-recapture data (Cochrane et al. 2018; Moen et al. 2018; Berkeland et al. 2019). The study found no significant difference in relative abundance, adult sex ratio, juvenile-adult ratio, or mean body size between 1990 and 2015, and the population growth rate was stable from 1997-2014 (Cochrane et al. 2018). The population reconstruction suggests that the population has been relatively stable over the past 30 years (Moen et al. 2018, Berkeland et al. 2019), but it also indicates that there has been a declining population growth rate from 2006-2017 compared to 1990-2005 (Cochrane et al. 2018).

Of particular concern are monitoring data from 2016-2018 which indicate a sudden and substantial decrease in the number individuals coinciding with a large number of dead turtles found on surveys (Berkeland et al. 2019, Crozier 2020). The estimated abundance at eight long-term monitoring sites was 247 individuals in 2016, and this estimate declined to 88 in 2018. Population modeling indicates that adult survival needs to be very high (about 95-97 percent) to sustain a stable population (Berkeland et al. 2019). The amount of mortality observed at long-term monitoring sites in recent years indicates that recent adult survival is likely below this 95-97 percent threshold. Based on the results of these analyses, it is possible that this northeast population is declining, as the different analyses indicate either a stable or declining population. Threats to adult Wood Turtles are of major concern for population viability given the high adult survival rate needed to maintain a stable population.

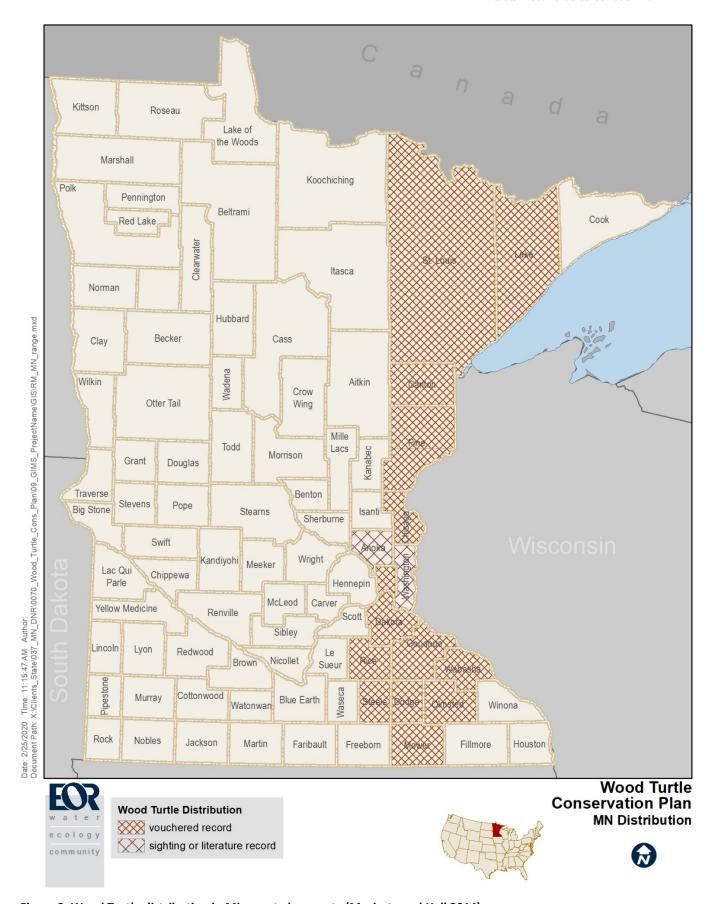


Figure 2. Wood Turtle distribution in Minnesota by county (Moriarty and Hall 2014).

2.5. ECOLOGY AND LIFE HISTORY

2.5.1 Phenology

The active season for Wood Turtles begins in mid to late April when they emerge from hibernation, with turtles in the southeast emerging slightly earlier (Moriarty and Hall 2014, C. Hall, personal communication). Turtles typically remain close to the river early in the year, basking on warm days (Moriarty and Hall 2014, Crozier and Hamady 2018). Wood Turtles breed primarily in the spring, but breeding activity can extend into the fall (Walde et al. 2003, Moriarty and Hall 2014). Nesting activity occurs in late May through June. In northeast Minnesota during 2015-2018 nesting surveys, turtles nested between May 29 and June 24 (Berkeland et al. 2019). Females may travel long distances to nesting sites. Once nesting is over, more time is spent in uplands away from the river (particularly by females) (Moriarty and Hall 2014, Crozier 2020). Hatchlings emerge from nests in mid-August to early October. In northeast Minnesota during 2015-2018 nesting surveys, hatchlings emerged from nests from August 10 – October 10 (Berkeland et al. 2019). The active season lasts through October, when Wood Turtles migrate to aquatic hibernacula (Moriarty and Hall 2014). See **Figure 3** for a summary of Wood Turtle phenology in Minnesota.

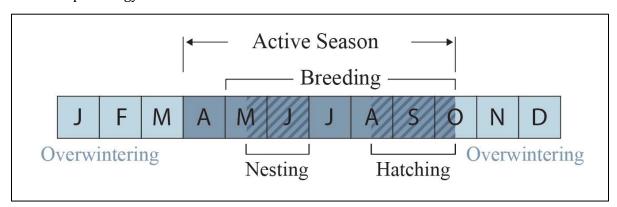


Figure 3. Wood Turtle phenology in Minnesota (Moriarty and Hall 2014, Berkeland et al. 2019; adapted from WDNR 2015).

2.5.2 Habitat

Wood Turtles generally occupy areas in and around small to medium size, moderate to fast moving rivers and streams (Harding 1997, Ernst and Lovich 2009). Rivers with a narrow floodplain and abrupt transition to uplands characterize the preferred habitat in Minnesota (Moriarty and Hall 2014). Watercourses with sand, gravel, or cobble substrates are preferred (Buech et al. 1997, Ernst and Lovich 2009). In Minnesota, Wood Turtles use a variety of near-water habitats depending on the season and activity, generally remain within 100 meters of flowing water (Buech 1995, Moriarty and Hall 2014, Brown 2016). However, Wood Turtles in both southeast and northeast Minnesota may travel over 250 meters from water, with northeast females frequently traveling >400 meters in June-August (Berkeland et al. 2019, Crozier 2020, C. Hall, personal communication). Though largely aquatic, Wood Turtles are the most terrestrial of Minnesota turtle species and feed mainly on land (Moriarty and Hall 2014). Alder thickets, forest, and grasslands are used for basking and foraging, with preference given to relatively open areas of mixed forest (Compton et al. 2002, Arvisais et al. 2004).

In southeastern Minnesota Wood Turtles frequently utilize altered landscapes. For example, Wood Turtles are frequently found foraging in agricultural fields near rivers (MNDNR 2018), and are known to consume corn kernels that fall to the ground. In southeastern Minnesota, a radio-tagged male was frequently relocated foraging in a large, dense stand of reed canary grass during the summer of 2017,

2018, and 2019. A radio-tagged female was frequently located in a black walnut plantation in 2009 and 2010.

Research in the northeast from recent studies indicated adult Wood Turtles are most frequently found in lowland brush, lowland hardwoods, pine, and aspen from May - September (**Figure 4**; Berkeland et al. 2019, Crozier 2020). Wood Turtles avoided lowland conifers, and there is some evidence they may avoid aspen in proportion to its availability. Females were most frequently found in lowland brush and upland conifer (primarily jack pine, red pine, and white pine). Females used lowland habitats more frequently in May-June (63 percent), upland habitats more frequently in July (61 percent), and upland and lowland habitats fairly equally in August-September (about 50 percent each). Males were most commonly found in upland conifer (primarily jack pine), but they also used aspen, lowland brush, and lowland hardwoods. Males used lowland and upland habitats fairly equally (about 50 percent each) in May-June, upland habitats more frequently in July (76 percent), and upland habitats more frequently in August-September (62 percent).

Wood Turtles were more frequently found in older forest >50 years old, specifically lowland hardwoods, jack pine, red pine, white pine, and aspen (**Figure 5**). Wood Turtles also used young and intermediate-aged forest (most notably jack pine 11-25 years old). Males used more young forest than females, and both males and females used more young forest in July compared to the other months. Observations of upland forested stands with high use during the summer activity period found that stands are typically older with large diameter trees and large canopy gaps containing dense herbaceous vegetation and shrub growth (Crozier 2020). Telemetry data showed that turtles most frequently used the portion of the stands with large canopy gaps interspersed with mature forest, presumably in order to meet both food and thermoregulatory needs.

Figure 4. Female and male habitat use by month for one Wood Turtle population in

northeast Minnesota (Berkeland et al. 2019, Crozier 2020).

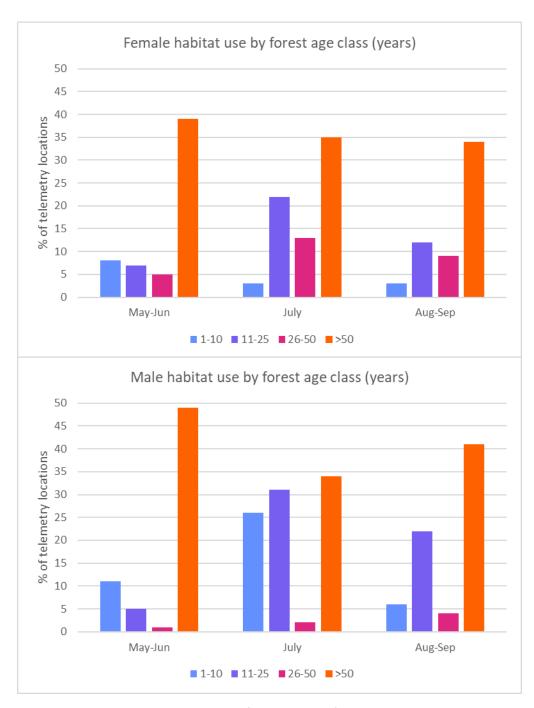


Figure 5. Female and male habitat use by forest age class for one Wood Turtle population in northeast Minnesota (Berkeland et al. 2019, Crozier 2020).

Ideal nesting habitat consists of sandy or gravelly areas with little vegetation, abundant light, and low risk of flooding (Buech et al. 1997, Hamady and Hall 2011, Moriarty and Hall 2014). Many habitats, both natural and modified, may serve as nesting sites and include dry prairie, sand and gravel bars, sandy points, sandy cutbanks, gravel pits, road and utility rights-of-way, and agricultural fields (Harding 1991, Foscarini 1994, Buech et al. 1997, Jones et al. 2015). Buech et al. (1997) identified six key habitat variables to nest sites: soil substrate, slope, aspect, elevation above water, distance to open water, and vegetative cover. In northeastern Minnesota suitable nest sites are generally sand and sandy gravel substrates. Slopes vary from nearly flat to 40°; when slopes exceed 20° southerly aspects are preferred.

Most nest sites are located between 2-5 meters above base-flow water levels, and typically within 10 meters of open water. Sites with less than 20 percent vegetative cover are favored. In the northeast, nests on average were 18.8m from water, 2.5m in elevation above the water, and had 6.7 percent canopy cover (Berkeland et al. 2019). Nest sites in southeastern Minnesota have not been studied in as much detail, but similar conditions are likely required. Several surveys have focused on potential natural nesting sites in the southeast, with documented sites including sand points, cut banks, old and agricultural fields, and a dormant gravel quarry (Mullins 2000, Holman 2004, Hamady and Hall 2011, C. Hall, personal communication). Prior to nesting, females stage nearby for several days and favor areas with natural vegetation cover such as willows, grasses, and forbs adjacent to sand points (Walde et al. 2007, C. Hall, personal communication).

Hatchling and juvenile habitat use is poorly understood relative to adults. After emergence (typically during daylight hours), hatchlings favor cooler areas with cover of herbaceous vegetation, woody debris, and leaf litter to avoid predation and desiccation (Tuttle and Carroll 2005, Castellano et al. 2008. Paterson et al. 2012). After hatching in upland areas, open uplands were strongly preferred to wooded uplands for an Ontario population (Paterson et al. 2012). Hatchlings generally move toward aquatic environments typical of adult use, but some studies suggest that prolonged time (up to 24 days) is spent in terrestrial habitat prior to moving to aquatic environments (Tuttle and Carroll 2005, Tamplin 2016).

In 2010, four telemetered hatchlings in northeastern Minnesota spent about 5 weeks foraging in herbaceous vegetation on the nesting site, with the one remaining hatchling moving to the river to hibernate adjacent to the nest site under a large downed tree (G. Crozier, personal communication). Head-started Iowa hatchlings remained within 200 meters of the nest/release site and became almost exclusively aquatic as temperatures cooled (Tamplin 2016). In Minnesota, six 1-year old turtles were observed at a nest site in mid-June, suggesting that these turtles may have overwintered near the nest site (Hamady and Hall 2011). Telemetered juveniles in Iowa generally used the same habitats as adults; however, they spent more time in aquatic habitats and less time in grassy and shrubby areas compared to adults (Tamplin 2019).

Wood Turtles hibernate beneath the ice within a watercourse and use a variety of locations depending on oxygen availability. Wood Turtles are considered anoxia intolerant and require oxygenated waters to survive hibernation (Ultsch 2006, Greaves and Litzgus 2008). Hibernacula locations include in the sediment within the channel, near structures such as bank undercuts or logjams, or within backwater ponds (Moriarty and Hall 2014, C. Hall, personal communication). Hibernacula sites documented in northeastern Minnesota primarily include locations within the main river course in the center of the river or in near-shore environments (Huston et al. 2018). Riverbanks near the hibernacula sites were typically dominated by alder. Water depth at hibernacula locations was 1 meter on average with an ice thickness of 25 centimeters. Mean dissolved oxygen was 9.2 ppm and mean conductivity was 29 μ S/cm. Selection of hibernacula sites in northeastern Minnesota for physical, chemical, and thermal properties is unclear; sites did not differ in these conditions compared to random locations within the river. There was also no difference between male and female hibernacula locations. Generally, conditions at hibernacula sites in northeastern Minnesota are comparable to hibernacula sites in other northern portions of the Wood Turtle range.

2.5.3 Diet and Foraging

Wood Turtles are opportunistic omnivores with a diversity of reported food sources. Dominant components of their diet include plant material such as fruits, leaves, and succulent forbs, and invertebrates such as earthworms and insects (Ernst and Lovich 2009, Moriarty and Hall 2014). Fungi, algae, mollusks, eggs, carrion, and small vertebrates like tadpoles and young mice are also consumed by the Wood Turtle (Jones et al. 2015). In southeastern Minnesota, scat collected during transmitter maintenance has revealed crayfish and land snail shell fragments in their diet, as well as kernels of corn. Radio-tagged turtles occasionally have slug fragments on their mandibles when captured.

2.5.4 Reproduction, Survivorship, and Population Structure

Wood Turtles reach sexual maturity between approximately 14-18 years of age; maturation may occur later in more northern latitudes (Moriarty and Hall 2014). Mating most commonly transpires in shallow water no deeper than 1.2 meters, with some observations of terrestrial mating (Walde et al. 2003, P. Leete, personal communication). Females lay one clutch of 4-18 eggs per year, though clutches typically include 7-9 eggs and may not be laid every year (Ernst and Lovich 2009, Moriarty and Hall 2014). The average number of hatchlings per nest for a population in northeast Minnesota was 8.5 (Berkeland et al. 2019). The incubation period reportedly ranges from 58-71 days (Moriarty and Hall 2014), though field data collected in the northeast and southeast regions suggest incubation periods up to 122 days (Berkeland et al. 2019, K. Hall, personal communication). In the northeast, the average number of hatchlings per nest was 8.5 (Berkeland et al. 2019).

The Wood Turtle is a long-lived species with a Type III survivorship curve (Akre 2002). Species with Type III curves experience high mortality early in life, with low mortality following the initial bottleneck. Nest depredation by mesopredators is extremely high. A study in northeastern Minnesota found 5 percent of Wood Turtle nests are successful (Berkeland et al. 2019). The most common nest predator in the northeast was the badger, with smaller numbers of nests predated by ravens, raccoons, skunks and foxes (Berkeland et al. 2019). However, the large number of nests predated by badgers in the northeast is likely unique to that part of Minnesota.

Reported survivorship of Wood Turtle hatchlings is extremely low; hatchling survival from nest emergence until winter dormancy was only 11 percent for a study in Ontario (Paterson et al. 2012). Survivorship increases for young adult turtles, but a study of Wood Turtles in Massachusetts and New Hampshire reported young adults are twice as likely to experience mortality as old adults (Jones 2009). Adult survivorship exceeded 0.80 in several studies in Virginia, New Hampshire, and Maine; estimates in Wisconsin have been reported between 0.73 and 0.84 (Compton 1999, Akre and Ernst 2006, Lapin et al. 2016, WDNR 2016). Adult survival estimated from radio-telemetry data in Minnesota was 0.89 (Lapin et al. 2019). When cause of death could be determined, predation was responsible for 75 percent of the mortalities.

Population modeling (Berkeland et al. 2019) found that the following survival rates are needed to produce the age-class structure observed in a northeastern population: annual survival of adults >15 years old at 95 percent or higher, annual juvenile (1-15 years of age) survival of 80 percent or higher, and survival of eggs through one year of age has been up to 5 percent (Berkeland et al. 2019). The oldest Wood Turtle caught in the northeast was a female at least 55 years old (Brown et al. 2015). For turtles to reach 55 years of age, population modeling shows that annual adult survival needs to be about 97 percent (Berkeland et al. 2019).

Population structure of Wood Turtles is variable for both sex ratios and adult to juvenile ratios (Jones et al. 2015, WDNR 2016). Populations are generally composed of a higher or equal ratio of females to

males. Wisconsin population sex ratios range from near equal to female-skewed, while Iowa populations show a nearly equal ratio (LeClere 2013, WDNR 2016). Likewise, adult to juvenile ratios are typically higher. However, many studies are skewed due to search biases toward nesting females during surveys, and that juveniles are less detectable during surveys and may use different habitat.

Population structure was studied for a northeastern Minnesota population based on 2016-2018 monitoring at eight sites each approximately 500 meters in length (Berkeland et al. 2019). Estimated abundance varied greatly among sites and years, and ranged from 1-77 individuals per site. For all sites combined, adult sex ratio varied annually from 1.3 females to 1.7 females per male, and juvenile-adult ratio was about 0.2 juveniles per adult annually (Crozier 2020). From the population reconstruction of the same population based on almost 30 years of mark-recapture data (Berkeland et al. 2019), sex ratio was 2.7 females to 1 male. The estimated juvenile-adult ratio is likely somewhere between 0.5 to 0.75 juveniles to 1 adult. Both sex and juvenile-adult ratios are skewed due to many of the surveys taking place at nesting sites during the staging and nesting season which biases the results to adult females.

2.5.5. Movements and Home Range

Wood Turtles generally remain within 300 meters of flowing water; telemetry studies in Minnesota suggest individuals typically stay within 100 meters (Buech 1995, Ernst 2001, Arvisais et al. 2002, Compton et al. 2002, Tuttle and Carroll 2003, Remsberg et al. 2006, Brown 2016). Wood Turtles remain closer to water early in the season and travel farther during summer based on temperature, foraging requirements, breeding, and the search for nest sites by females (Ernst 1986, Moriarty and Hall 2014). The most extensive movements are along watercourses and usually related to males searching for a mate or females searching for a nest site (WDNR 2016). In southeast Minnesota, males appear to spend more time in the water than females (T. Markle, personal communication). Daily movements are highly variable and depend on resource availability, seasonality, and geography. Terrestrial maximum daily movements are reported between 410-900 meters and aquatic maximum daily movements are reported up to 2,940 meters (Tuttle 1996, Ernst 2001, Walde et al. 2007).

Telemetry data from northeastern Minnesota show that Wood Turtles move an average of 0.58 meters/minute (Berkeland et al. 2019, Crozier 2020). Male turtles on average stayed closer to the main river channel than females. Males consistently stayed within about 200 meters of the river throughout the active period. Females traveled farther from the river than males in all months. Some female turtles had a similar pattern to male turtles and stayed close to the river (<200 meters) throughout the active period. However, some females traveled far from the river, particularly in June – August. About 23 percent of female turtles traveled >400 meters from the river in June-August. The maximum distance a female turtle traveled from the river was 524 meters.

Observations from telemetry studies in Minnesota suggest males and females exhibit different movement patterns (Crozier 2020). Males typically stay in a single activity area near the river, sometimes traveling 0.5-1 miles along the river. Females may also have a single activity area near the river, but typically venture farther into the uplands from the river than males. Additionally, females may have two distinct activity areas: a spring activity area near their nesting site and a summer activity area near their hibernacula site.

The general pattern for these turtles with two activity areas is that they emerge from hibernation and spend early spring near their hibernacula site. They then travel using the river and river corridor to their nesting location and spend the staging and nesting period in this location. During the post-nesting period, they travel back to their hibernacula area and spend the rest of the summer in the general area of the hibernacula site. While these turtles stay in the general area of their hibernacula site until hibernation, they venture farther from the river in July and August before staying closer to the river by early fall. The distance between the spring activity area near the nest site and the summer activity area near the hibernacula site ranged from 1-5.4 miles. Turtles telemetered for multiple years showed strong site fidelity to their spring and summer activity areas.

Home ranges of Wood Turtles vary based on geography, sex, habitat quality, drought, distance to hibernaculum and nesting sites, and estimate method (Arvisais et al. 2002, Remsburg et al. 2006, Environment Canada 2016). Like Wood Turtle movements, home ranges generally are constricted along watercourses and have an elongated shape (Environment Canada 2016). In northern Minnesota, one study estimated Wood Turtle home range as approximately 3 hectares (Buech 1994). Several studies in Wisconsin measured home ranges between 0.1-278.3 hectares using different estimation methods, with average home ranges from 7.4-20.5 (WDNR 2016).

3. PAST AND CURRENT CONSERVATION EFFORTS IN MINNESOTA

There has been considerable effort to understand the distribution, abundance, and life history of the Wood Turtle in Minnesota and to manage and protect Wood Turtle populations. Surveys, monitoring, research, management, and protection efforts have occurred over the past four decades, often as a collaborative effort among agencies, universities, non-profits, and contractors.

3.1 SURVEYS AND MONITORING

The Minnesota Natural Heritage Information System (NHIS) includes historic records of Wood Turtle occurrence from the 1930s to present. The NHIS provides baseline data on Wood Turtle range within Minnesota and includes records collected during targeted surveys conducted by professionals and incidental citizen sightings assessed by MNDNR. The first formalized surveys for Wood Turtles consisted of reconnaissance type surveys initiated in the 1980s to document distribution and abundance in both northeastern and southeastern Minnesota. These reconnaissance surveys suggested the most significant Wood Turtle populations were located in northeastern Minnesota. Numerous surveys have since been conducted and are described in approximate chronological order and by region below.

Surveys of the Northeast L and Northeast D rivers in northeastern Minnesota were conducted by the U.S. Forest Service (USFS) in the early 1990s, nesting sites were identified, and telemetry was used to examine movement patterns and habitat use (Buech et al. 1990, Buech 1995). Additional informal surveys of the Northeast L and Northeast D rivers continued from 1990s through present by USFS, MNDNR, and Fond du Lac Band of Lake Superior Chippewa. Surveys of the Northeast K River began in 2000 and continue into the present (Naber 2001, J. Naber, personal communication). In central Minnesota, general turtle surveys documented Wood Turtle occurrence in the Northeast B River. MNDNR also conducted surveys on several tributaries of the Northeast M River in 2000 and 2001. In southeastern Minnesota, surveys were conducted by the MNDNR and Place D during the 1990s on the Southeast B, Southeast D, Southeast A, and Southeast C Rivers and suggested low populations in the region (Erpelding 1998, Hines 1999, Mullins 2000). The surveys conducted throughout the state since the 1990s support that the most robust populations remain in the northeast while many southeastern populations appear small and imperiled.

Surveys were conducted along the Southeast D River in southeastern Minnesota in 2002 and 2003 (Holman 2004). The Northeast G and Northeast F Rivers were surveyed in 2007 but did not record any individuals (Hines 2007). In 2009 and 2010, a State Wildlife Grant (SWG) provided funding for MNDNR to survey under-surveyed river sections distributed throughout the Wood Turtle range in Minnesota (Hamady and Hall 2011). These rivers included the Northeast I, Northeast C, Northeast D, and Northeast K rivers in the northeast, the Northeast A River in the central, and the Southeast C and Southeast A rivers in the southeast (Hines 2007, Naber and Majeski 2009, Naber and Majeski 2010, Hamady and Hall 2011). Smaller tributaries in the northeast were also surveyed and included the Northeast H, Northeast J, and Northeast E rivers (Naber and Majeski 2009, Naber and Majeski 2010). These surveys covered a wide range of conditions in different rivers allowing for comparison of different systems within the major areas of Wood Turtle concentration in the state.

From 2013-2019, two competitive State Wildlife Grants (cSWG) were awarded to the states of Minnesota, Wisconsin, Michigan, and Iowa to take a regional approach in examining threats and

effectiveness of conservation efforts for Wood Turtles (Crozier 2018; Crozier and Hamady 2018, Crozier 2020). Conservation actions such as creating nesting sites, protecting nests from depredation, and installing road barriers were implemented. Effectiveness was assessed using surveys, remote cameras, and telemetry (Crozier and Hamady 2018, Berkeland et al. 2019, Crozier 2020). A long-term monitoring protocol was developed to enable the MNDNR to assess long-term effectiveness of the conservation actions (Brown et al. 2017), and baseline monitoring data were collected on the Northeast D and Northeast L Rivers (Berkeland et al. 2019).

Additional recent efforts include surveys in southeastern Minnesota led by MNDNR and the Minnesota Zoo (MN Zoo) funded in part by a SWG grant and Legislative-Citizen Commission on Minnesota Resources (LCCMR) funds (Naber and Majeski 2017, T. Markle, personal communication). These most recent Wood Turtle surveys confirm that most significant populations in Minnesota remain in northeastern Minnesota. However, a complete understanding of the range, distribution, and abundance of the Wood Turtle population remains elusive due to low densities and difficulty of observation in many reaches of the state.

3.2 RESEARCH

Wood Turtle research in Minnesota has included the study of population trends, habitat use and movement, habitat restoration, nesting, hydrology, and road mortality. Research completed to date is foundational to the Conservation Plan and will be a critical component of future conservation and recovery efforts.

3.2.1 Population Trends and Modeling

Only recently have attempts been made to determine population trends of the Wood Turtle in Minnesota (Cochrane et al. 2018, Berkeland et al. 2019). The population trends for the Northeast L River described in Section 2.4.3 were investigated as part of the 2013-2019 cSWG project. An integral part of this research consisted of development of a long-term monitoring protocol (Brown et al. 2017). Long-term monitoring sites were established and baseline data were collected on the Northeast L and Northeast D rivers with the intent to monitor these sites every five years (Berkeland et al. 2019). Ten population and habitat parameters were developed to best evaluate long-term response of Wood Turtle populations, specifically in regard to conservation actions (Crozier and Hamady 2018). Population modeling was conducted on the Northeast L River as part of the cSWG project and consisted of a population reconstruction to examine population trends and population structure (Moen et al. 2018, Berkeland et al. 2019). Modeling is being used to evaluate the influence of adult survival and juvenile recruitment on population stability so that management actions can be focused on the most critical aspect of population viability.

3.2.2 Habitat Use and Movement

Telemetry surveys have been used to characterize Wood Turtle habitat use and movement in Minnesota since the 1990s. Most recently, telemetry was implemented in both the northeast and southeast regions by the MNDNR, University of Minnesota, and MN Zoo. The MNDNR commenced a telemetry pilot endeavor in 2009 and 2010 on the Southeast C and Southeast A Rivers (Hamady and Hall 2011). The study laid groundwork for future telemetry efforts and provided insight into habitat use for nesting, foraging, and hibernacula (including location of nest sites on agricultural land). Additionally, informal efforts to track hatchlings using telemetry occurred on the Northeast D River in 2010 (G. Crozier, personal communication).

Telemetry was used on the Northeast L River in 2015-2017 as part of the cSWG project to assess Wood Turtle movement patterns, habitat use, and use of conservation action areas (Cochrane, et al. 2017, Berkeland et al. 2019, Crozier 2020). Assessment of movements and seasonal habitat use provided data on distance traveled from the river, types of habitat used, locating and characterizing hibernacula, and how these parameters vary by sex and season. The results are integrated into Section 2.5 of this report.

Beginning in 2017, telemetry in the southeast focused on a small number of sites along the Southeast D and Southeast B Rivers, expanding in 2018 and 2019 to additional sites and the Southeast A River (T. Markle, personal communication). In 2018, the MN Zoo also released five head-started turtles fitted with radio transmitters. Tracking of these turtles will continue into 2020. This research is possible through a partnership between the MNDNR and MN Zoo, and funded by a 3-year LCCMR grant. This research will provide data on habitat use and movements in the southeastern Wood Turtle populations with an overarching aim to characterize the threats of road mortality and nest predation on several turtle species, including Wood Turtles. The research will also investigate mechanisms to improve imperiled species conservation, such as improving hatching success.

3.2.3 Habitat Restoration

In 1990, the USFS created a nesting site on the Northeast L River as an alternate for Wood Turtles nesting on a nearby road. The cSWG project from 2013-2019 facilitated MNDNR to restore this nest site, create 21 additional nest sites, and restore seven foraging areas consisting of jack pine stands totaling 91 acres (Crozier and Hamady 2018, Crozier 2020). Research included monitoring of Wood Turtle use following habitat restoration or creation. The ability to assess use of created and restored sites had limitations. Wood Turtle used the restored nesting site during the study, but there was no evidence that turtles used the created nesting sites (Crozier and Hamady 2018, Berkeland et al. 2019, Crozier 2020).

3.2.4 Nest Success and Depredation

To address nest predation, cSWG funding from 2013-2019 allowed monitoring of 156 Wood Turtle nests along the Northeast L River, including 29 nests equipped with nest cages and a minimum of 10 nests protected with an electric fence (Berkeland et al. 2019). The study monitored nest success of protected and unprotected nests, documented depredation, and collected ancillary biological and environmental data at each nest. Motion sensor cameras deployed at 36 nesting or potential nesting sites captured predator observations and depredation events, providing species-specific identification of predators and behavior. When feasible, hatchlings were PIT-tagged following emergence from nests. Caged nests increased nest success to 48 percent but installation and monitoring proved challenging and time intensive. Badgers were the most frequently documented nest predator and learned to dig up cages during the second year of study. The electric fence was a more efficient and effective way to reduce nest depredation.

The MN Zoo is currently working with MNDNR to identify potential nesting areas for Wood Turtles in southeastern Minnesota to meet the objective of improving hatching success and to protect those areas from mammalian predators using electrified fences (T. Markle, personal communication). Two nest protection fences were installed in spring 2019 along the Southeast D River, and additional nesting areas will be protected in 2020. In 2019, the MN Zoo also reared eggs from three at-risk nests to evaluate head-starting as a technique to increase survival; additional investigation of head-starting will continue in 2020.

517

518

519

520

521

522

523 524

525

526

527

528

529

530 531

532

533

534 535

536 537

538

539

540

541 542

543

544

545

546

547

548

549

3.2.5 **Road Mortality**

2020).

Identification and management of high-risk locations for Wood Turtle travel was investigated using telemetry during the 2013-2019 cSWG (Crozier and Hamady 2018, Berkeland et al. 2019). Telemetry identified roads that have the greatest potential for mortality. High-risk locations were typically associated with turtles nesting on road shoulders and areas where turtles crossed roads to forage during July and August. Turtles did not typically cross roads during travel to nest sites located near the river, instead using the river as the primary travel corridor. Observations of road mortality on the Northeast D and Northeast L rivers were minimal during the study.

Recent research has also considered the impacts of altered hydrology on Wood Turtles due to land use and climate change. Lenhart et al. (2013) examined the long-term change in suitability of flows for

Wood Turtle nesting in both northeastern and southeastern Minnesota. This study concluded that

hatching is likely delayed in agricultural watersheds due to prolonged inundation of sandbar nest sites

compared to pre-1980s conditions. Hydrologic modeling as part of the 2013-2019 cSWG determined

flood risk of nesting sites and identified flood-safe sites suitable for conservation or restoration action

(Naber and Ulrich 2016, Crozier and Hamady 2018). Nest site flooding was minimal on the Northeast L

River during the study; however, flooding may be more of an issue on the Northeast D River (Crozier

The efficacy of road barriers to dissuade turtles from crossing and nesting along roads was also evaluated (Crozier and Hamady 2018, Berkeland et al. 2019, Crozier 2020). Temporary road barriers were installed at several high risk locations. Results indicated that the temporary barriers were not effective at preventing road access and road nesting by Wood Turtles. Turtles traveled around barriers and were able to get through barriers in places where fencing was ripped or torn down by people. More experimentation is needed with barrier material, barrier design, and ways to deal with private lands.

Though not specific to Wood Turtles, the MN Zoo is also actively investigating road mortality of turtles and mitigation strategies to reduce impacts on turtle populations. In collaboration with the Minnesota Department of Transportation (MNDOT), the MN Zoo is evaluating the effectiveness of turtle fences and turtle crossing warning signs. If found to be effective, strategies could be applied in areas where there is potential for Wood Turtles on roads.

3.3 MANAGEMENT AND PROTECTION

Management and protection strategies have generally focused on legal protection, forest management recommendations, environmental review recommendations, and habitat protection. Management partners include the DNR, USFS, county forest management, MNDOT, county Department of Transportation, and private citizen efforts. Wood Turtles are legally protected under state law, which prohibits the killing, destroying, and possessing of Wood Turtles without a permit. Management efforts have primarily focused on providing technical guidance on proposed projects to prevent the take of turtles, and if possible, to maintain or enhance habitat. Recommendations generally include seasonal timing restrictions during the active season, protecting nesting areas, creating safe passage under roads, minimizing mowing until late summer, avoiding use of riprap and retaining walls, protecting water quality, reducing stormwater runoff, managing invasive species, and limiting recreation in critical areas (DNR 2011). The MNDNR has developed forest management guidelines for Wood Turtles to avoid impacting Turtles and their habitat. MNDNR has also developed a fact sheet for environmental review

purposes to reduce impacts of projects on Wood Turtles and their habitats.

A limited number of management projects have occurred specifically to benefit Wood Turtles, including habitat restoration and creation, nest protection, and roadside management. The USFS developed guidelines for creation of nesting areas in 1991 and nest scrapes were created by the USFS in northeastern Minnesota in the 1990s (Buech and Nelson 1991). During the 2013-2019 cSWG several management actions were implemented (Crozier and Hamady 2018, Crozier 2020). Restoration activity was conducted on 91 acres of pine forest habitat along the Northeast L River to improve foraging habitat. Nesting habitat was also created or restored in flood-safe areas of the Northeast L River. Nest cages and an electric fence were installed along the Northeast L River (Section 3.2.3) and road barriers were fitted along high-risk road locations (Section 3.2.4). The efficacy of the actions continues to be assessed and will inform future specific management actions.

The Place B was established in 1996 to protect a stretch of river that includes habitat for nesting turtles, including Wood Turtles. Sandbars within Place B are closed sanctuaries from May to October 15. In the northeast, efforts are currently underway to establish a Scientific and Natural Area (SNA) for Wood Turtles on the Northeast D River and to create special management areas for lands on the Northeast D and Northeast L rivers where SNA designation is not possible.

4. ISSUES, GOALS, AND STRATEGIES

567

568

569

570

571

572

573

574

575

576

577 578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

This section identifies the issues, goals, and strategies for the Conservation Plan. The overarching conservation goal for the Wood Turtle in Minnesota was established by the Wood Turtle Planning Team during the development of the Conservation Plan.

Conservation Goal: To maintain and enhance Wood Turtle populations throughout their range in Minnesota with the goal of having viable populations.

The Wood Turtle Planning Team subsequently identified issues affecting the Conservation Goal and established broad, statewide 10-year goals that address each issue. Strategies and sub-strategies were identified to progress toward the 10-year goals. The strategies identified in the Conservation Plan will start moving the species toward recovery and can be used to inform a future recovery plan.

1. Issue Statement:

An issue is defined as a factor or stressor affecting the Conservation Goal. In most cases, an issue has multiple sub-issues which affect it. The issues identified and prioritized in this plan were used to define the goals, strategies, and implementation activities. Five issues were identified and are discussed in this section:

- Habitat
- Adult Mortality, Removal, and Sub-lethal Impacts
- Juvenile Recruitment
- Knowledge Gaps
- Partnerships

2. Desired Future Condition (Long-term Goals):

Statement describing the desired long-term, future condition of the issue, regardless of timeframe.

3. 10-Year Goal:

The broad, state-wide objective over the next 10 years after implementing the Conservation Plan.

4. Strategies:

Broad conservation strategies to meet the state-wide 10-year goals.

5. **Sub-Strategies**:

Prioritized and specific conservation strategies within the strategies.

4.1 HABITAT

4.1.1 Issue Statement

Habitat loss, degradation, and fragmentation pose a serious threat to Wood Turtle populations. Impacts to habitat affect Wood Turtles at all life history stages and are deeply intertwined with the other issues identified within this plan. Threats to Wood Turtle habitat include agricultural practices, altered hydrology, forestry practices, invasive plant species, mineral extraction, recreation, and road networks and urbanization. It is important to consider the cumulative effects of all identified threats to Wood Turtle habitat. Impacts of specific threats vary in scale depending on location, but when combined across the landscape may have a significant effect on Wood Turtle populations. Additionally, climate change is linked closely with many of the identified threats and likely affects Wood Turtle habitat from regional to site-specific scales, and is incorporated where applicable below.

4.1.1-A: Agricultural Practices

Agriculture is a common land use within the Wood Turtle range in Minnesota, especially in the southeast region. Historical and current conversion of land to agriculture is responsible for direct loss and degradation of terrestrial habitat (Jones et al. 2015). Row cropping negatively impacts foraging habitat via reduced plant and invertebrate availability (Saumure and Bider 1998). Indirect effects of agriculture on habitat include sedimentation and pollution of aquatic habitat (Environment Canada 2016). Beneficial foraging habitat may be provided by hayfields, and nesting was documented in agricultural and old fields in southeastern Minnesota (Saumure et al. 2007, Hamady and Hall 2011). Grazing is suspected to have historically maintained open habitat within woodlands of the southeast region, enhancing foraging and potentially nesting habitat (C. Hall, personal communication). However, agricultural habitat use may increase risk of mortality and function as an ecological trap (Section 4.2.1-D; Saumure et al. 2007, Environment Canada 2016, Pappas et al. 2017).

4.1.1-B: Altered Hydrology

Wood Turtles rely on natural processes of riparian ecosystems to create and maintain habitat, and are sensitive to changes in river hydrology. Flooding frequency, intensity, and duration are increasing, in addition to changes in timing of flows (Lenhart et al. 2013, Jones at al. 2015, Naber and Ulrich 2016, Crozier and Hamady 2018). These changes in hydrology affect Wood Turtle recruitment, including nest flooding, delayed nesting, changes in the creation and maintenance of nest habitat, and loss and degradation of nest habitat. Severe flood events also displace or even drown adult Wood Turtles (Jones and Sievert 2009, Jones et al. 2015).

Anthropogenic alterations such as land use, streambank stabilization, dams, and impoundments are primary drivers of change to hydrologic regimes. Clearing of natural lands, altering vegetation on natural lands, and drainage of wetlands increases runoff, especially when replaced with impervious surface (Jones et al. 2015). Increases in runoff change the timing and amount of water flow as well as sedimentation dynamics. These factors impact the availability of nesting habitat and nest flooding. Dams likely caused direct loss of habitat in the past, and they continue to alter riparian systems by withholding substrate that contributes to suitable nest sites and influences flow patterns (Jones et al. 2015). Bank stabilizations featuring riprap or concrete are poor habitat and, like dams, inhibit development of suitable nest sites (Buech 1992, Jones et al. 2015). Some bank stabilizations contribute to increased severity of floods (Jones and Sievert 2009). Climate change compounds hydrologic changes and their effect on Wood Turtles in Minnesota via increased storm frequency, flood events, and more severe drought (Larson and Anderson 2016).

4.1.1-C: Forestry Practices

Forestry is a common land use within the Wood Turtle range in Minnesota, particularly in the northeast region. Forestry practices including road development, forest harvest, forest type conversion, and herbicide use may reduce, degrade, and fragment habitat. Historically, riparian habitat may have been lost or degraded by logging drives (COSEWIC 2007). Large tracts of historical pine forest in northeastern Minnesota are now dominated by younger aspen stands. Fire was once the dominant disturbance factor in pine forests and is now largely suppressed (Heinselman 1973, Frelich and Reich 1995), having been replaced by timber harvest. It is unknown what impacts these historic changes may have had on turtles. Fires result in a flush of herbaceous vegetation and potentially create open areas for nesting and foraging. Pine stands have a different herbaceous ground layer and forest structure compared to more uniform aspen stands. These changes may have impacted the availability of food resources and the quality of habitat conditions for Wood Turtles.

The effects of current forestry practices on habitat have generally not been quantified. Wood Turtles are considered an edge species, moving between open and shady areas to thermoregulate while foraging. Clear-cutting may reduce sources of food and shelter, and areas logged within 10 years are generally avoided by Wood Turtles (Environment Canada 2016, Berkeland et al. 2019). Forest harvest typically simplifies species and structural diversity of a stand, potentially changing food availability and microhabitat conditions for thermoregulation. Much of the remaining pine is now managed as pine plantations often using herbicide, likely resulting in low quality habitat. Clear-cutting resulting in landuse conversion may alter watershed hydrology (see 4.1.1-B), potentially increasing sedimentation and nest flooding (COSEWIC 2007). Logging roads fragment habitat, attract turtles to roadside nests creating ecological sinks, and increase recreation along the river, which can degrade nesting habitat (see 4.1.1-F).

Some forestry practices may enhance habitat with proper timing and management of hydrology and soils (Kaufmann 1992; Wesley 2006; Tingley and Herman 2008). Forestry practices that maintain quality native plant communities with high species and structural diversity as appropriate for the plant community can help increase quality habitat.

4.1.1-D: Invasive Species

Invasive plant species threaten Wood Turtle habitat, with the most direct observations of impacts at nest sites. Natural nesting sites such as sand points and bars are observed overgrown with reed canary grass (*Phalaris arundinacea*) in Minnesota (Hamady and Hall 2011, Jones et al. 2015). Vegetation management was also an issue for created nesting sites in northeastern Minnesota (Crozier and Hamady 2018). The non-native subspecies of the grass *Phragmites australis* is expanding in Minnesota and could threaten nesting habitat. Invasive species such as reed canary grass and buckthorn may affect quality or connectivity of foraging and other habitat, but impacts have not been studied. MNDNR has observed foraging activity in patches of reed canary grass, and it is unknown if there are any positive benefits conferred by these communities (C. Hall, personal communication). In addition, non-native, invasive earthworms profoundly impact forest communities (Frelich et al. 2006) and potentially alter food resources for Wood Turtles, though earthworms can serve as a food source (Kaufmann 1986).

4.1.1-E: Mineral Extraction

Mineral extraction, while not a dominant land use in Minnesota, poses significant threats to Wood Turtle habitat. Sand and gravel pits from aggregate mining attract Wood Turtles due to their suitability as nest sites in the absence of natural nest sites. Sand and gravel pits are commonly observed in use by

Wood Turtles for nesting (Buech et al. 1997). One study in northeastern Minnesota found that sand and gravel pits were more frequently used by Wood Turtles than would otherwise be expected at random (Brown et al. 2016). These areas could function as ecological traps due to increased exposure to predators, roads, and human disturbance (Crozier and Hamady 2018).

Metals mining is also an issue for Wood Turtle populations in northeastern Minnesota. Iron/taconite mining is a historical and active land use within several watersheds of northeastern Minnesota. Coppernickel mines are proposed for the region and exploration for copper, nickel, gold, and platinum group metals is ongoing. Potential impacts of metals extraction include altered river flow patterns, increased river sedimentation, surface and groundwater contamination, and direct habitat loss (MEQB 1979). For example, water releases from mining projects may cause flooding of downstream nest sites (Crozier and Hamady 2018).

4.1.1-F: Recreation

Wood Turtle habitat is often attractive for recreation, which can result in negative effects on Wood Turtle populations. Two populations in Connecticut declined after opening of habitat to fishing and hiking due to incidental collection by recreationists (Garber and Burger 1995). Off-road vehicle and hiking trails may fragment habitat, attract turtles to nest in poor quality habitat, increase risk of illegal collection by recreationalists, and introduce stressors. Off-road vehicles potentially destroy nesting habitat, or even result in mortality from crushing (Environment Canada 2016). Important nesting habitat like sand bars and points are popular stopping points for river recreationists, and are easily disturbed or destroyed. Further, trash left near nesting habitat attracts predators and increases risk of nest predation (Strickland and Janzen 2010).

4.1.1-G: Road Networks and Urbanization

Urbanization affects Wood Turtle habitat both directly and indirectly. Most obviously, conversion of land cover to urban use causes direct habitat loss, degradation, and fragmentation (Elmqvist et al. 2016). Indirect impacts include altered riparian hydrology, poor water quality, and reduced biotic richness due to cover of impervious surfaces (Shuster et al. 2005, Chadwick et al. 2006). Associated development of road networks fragments habitat and inhibits movement across the landscape for turtles (Shepard et al. 2008). Mortality via vehicle strikes also tie into issues of adult mortality and juvenile recruitment (Sections 4.2 and 4.3). Further, urbanization supports higher populations of mesopredators such as raccoons and skunks, primary predators of Wood Turtle adults, juveniles, and nests (Mitchell and Klemens 2000, Prange and Gehrt 2004).

4.1.2 Desired Future Condition

Sufficient habitat exists to support viable Wood Turtle populations.

4.1.3 10-Year Goal

Goal: Improve and maintain Wood Turtle habitat and habitat connectivity.

4.1.4 Strategies

The Wood Turtle Planning Team identified two strategies to progress toward the 10-Year Goal: 1) River System Management and 2) Site Habitat.

4.1.5 Sub-strategies

The Wood Turtle Planning Team identified sub-strategies to focus each strategy with the goal of developing targeted implementation activities with measureable targets. The strategies, sub-strategies, and how they address each sub-issue are presented in **Table 2**.

Table 2. Habitat Strategies, Sub-strategies, and Sub-issues

		Sub-issues: Habitat						
Strategy	Sub-strategy	Agricultural Practices	Altered Hydrology	Forestry Practices	Invasive Species	Mineral Extraction	Recreation	Urbanization
	Protect habitat in key river stretches Increase terrestrial habitat connectivity	x x		x	X	x	x	x x
River System Management	Sustain free-flowing natural river systems Reduce agricultural overland and sub-	х	Х	х				
	Incorporate Wood Turtle needs into landscape scale planning efforts	x	x	x		x	x	х
	Identify, create, restore, and enhance nesting habitat		x	x	x	x	x	
Site Habitat	Identify, create, restore, and enhance foraging habitat	x		x	x			
	Identify, create, restore, and enhance hibernacula habitat for hatchlings	х	x				x	
	Improve site level management recommendations	x		х	X	x	x	x

4.2 ADULT MORTALITY, REMOVAL, AND SUB-LETHAL IMPACTS

4.2.1 Issue Statement

Loss of breeding adult Wood Turtles, particularly adult females, is a major issue for population viability. Wood Turtle populations rely on high adult survivorship to offset low recruitment early in life; and removal of even 2 to 3 individuals annually may result in extirpation of small, isolated populations (Congdon et al. 1993, Compton 1999). Adults may be lost from populations via mass mortality events, road mortality, predation, illegal collection, forestry and agricultural practices, environmental contamination, and disease. In some cases, impacts may be sub-lethal, but cumulative effects may contribute to increased mortality.

4.2.1-A: Mass Mortality Events

Reports of mass mortality of adult Wood Turtles are of grave concern due to the potential for rapid loss of a large percentage of the breeding population. Since 2016, MNDNR researchers have recorded unusually high observations of adult mortality (107 mortalities) for a Wood Turtle population in northeastern Minnesota (Berkeland et al. 2019, Crozier 2020). The cause of mortality is unknown. The majority of the dead Wood Turtle individuals were discovered each year in a specific river stretch, primarily in May, potentially suggesting a related event. Mass mortality of 12 Wood Turtles was reported in Pennsylvania (Jones et al. 2015). The cause of the Pennsylvania die-off was not determined, but also affected Bog Turtles (*Glyptemys muhlenbergii*). Mass mortality events in other freshwater turtles are linked with varying uncertainty to predation, infection, poisoning, drowning, poaching, and winterkill (Brooks et al. 1991, Catrysse et al. 2015).

Predation by otters during winter hibernation and spring sepsis caused mass mortality of a Canadian population of Snapping Turtles (*Chelydra serpentina*) (Brooks et al 1991). Predation was also responsible for mass mortality of a population of Pond Sliders (*Trachemys scripta*) in Illinois and was limited to nesting females of relatively smaller size (Tucker et al. 1999). Another event in Canada included 35 female Northern Map Turtles (*Graptemys geographica*); predation and boat strikes were ruled out due to intact shells, but the ultimate cause and specificity to females was unclear (Catrysse et al. 2015). Infectious disease following atypically cold weather resulted in mass mortality of an Eastern Box Turtle (*Terrapene carolina*) population in Kentucky, indicating an interactive effect with cooler and more variable climate (Agha et al. 2017). Studies of turtle populations following mass-die offs indicate that populations can be decimated quickly, and recovery may be slow (Brooks et al. 1991). Therefore, identification and mitigation of the cause of mass mortality in Wood Turtle populations is critical.

4.2.1-B: Road Mortality

Throughout their range, road mortality is identified as a significant cause of mortality for adult Wood Turtles (Akre and Ernst 2006; Jones et al. 2015). Seasonal movement of individuals may require crossing road networks to search for mates or nesting, foraging, and overwintering sites; modeling demonstrated that semi-terrestrial turtles with these traits are especially vulnerable to road mortality (Gibbs and Shriver 2002). Roads attract Wood Turtles due to suitability for nesting and lack of natural habitat, thereby serving as ecological traps (WDNR 2015). Roadsides with well-drained substrates offer suitable nesting habitat to female Wood Turtles, especially when natural habitat is lacking (Buech et al. 1997; Cochrane et al. 2018). Consequently, proximity to roads may explain higher male to female sex ratios in some turtle populations (Steen et al. 2006).

In Minnesota, database records and local biologists indicate road mortality as a major contributor to adult mortality, though recent studies observed low mortality while monitoring dangerous road

crossings (Berkeland et al. 2019, Crozier 2020). Road mortality is likely associated with loss of nesting habitat, increased development of road network, and heavier traffic, and is closely related to the issue of habitat loss, fragmentation, and degradation described above.

753 754

755

756

757

758

759

760

761

762

4.2.1-C: Predation

Predation of adult Wood Turtles is recognized as a conservation concern (Jones et al. 2015). Elevated populations of mesopredators contribute to adult mortality via predation, though effects are more substantial for nests and young turtles (Section 4.3.1-A). Mesopredators such as raccoons and skunks occur at unnaturally high numbers in parts of the landscape due to a human-subsidized food supply (e.g. food waste, row crops), depressed populations of apex predators, and alterations to habitat (Mitchell and Klemens 2000). Direct predation of adults is rarely observed; however, mutilation or amputation is frequently observed and may have sub-lethal impacts (Harding and Bloomer 1979, Walde et al. 2003, Saumure et al. 2007, Moriarty and Hall 2014). One study noted that mutilated Wood Turtles were recaptured less frequently (Harding 1985). Studies in Minnesota also reported mutilation of adults and considered predation as a possible cause of adult deaths in a northeastern population (Cochrane et al. 2018).

763 764

765 766

4.2.1-D: Illegal Collection

Though legally protected from commercial collection throughout its range, illegal take of Wood Turtles is a serious threat to populations. Historically Wood Turtles may have been collected as a food source, but the pet trade is currently considered the primary collection motive (Levell 2000, Walde 2007). Collection of Wood Turtles by humans for the pet trade may lead to local population crashes. Though often unconfirmed, suspected collections are frequently cited as causes of drastic declines. An Ontario population declined 70 percent following reported collections (Environment Canada 2016). Casual collection by landowners or recreationalists, however limited, can still have a significant effect on small, isolated populations (Environment Canada 2016). Commercial collection has not been documented in Minnesota, but the potential for single collection events to cause dramatic negative effect remains a persistent threat.

778

774

775

786 787 788

789

792

793

4.2.1-F: Contaminants and Water Quality

Though poorly defined empirically, contaminants and poor water quality are a potential source of Wood Turtle mortality and sub-lethal impacts (Jones et al. 2015, Environment Canada 2016). Burger and Gerber (1995) hypothesized Wood Turtles may be vulnerable to bioaccumulation because they are

4.2.1-E: Forestry and Agricultural Practices

Land use and land management practices from agricultural, forestry, and other activities are a source of adult mortality. Wood Turtles are crushed or mutilated by agricultural machinery in populations where agriculture is the dominant land use (Saumure and Bider 1998, Environment Canada 2016). Similar death and injury may occur via forestry equipment, but direct observation is difficult and remains undocumented (Tingley and Herman 2008). Forestry access roads increase road density and open up areas to off-highway vehicles, and one mortality was recorded in northeastern Minnesota on a small logging road (Crozier and Hamady 2018). Forestry roads increase access to Wood Turtle areas, increasing the risk of collection by recreationalists. Several reports exist of mortality from recreational vehicles based on personal communications, and one study documented crushing of Wood Turtles by utility right-of-way maintenance equipment (Akre and Ernst 2006; Environment Canada 2016). Adult mortality from land management practices in Minnesota likely manifests differently in the northeastern and southeastern populations, where dominant land cover is primarily forest in the northeast and agriculture in the southeast.

long-lived, and invertebrates comprise a significant part of their diet. Negative impacts of agricultural and industrial chemicals and poor water quality are reported for other turtle species (Mitchell and Klemens 2000, Shelby-Walker et al. 2009). For example, polychlorinated biphenyl (PCB) exposure can lead to higher deformity rates in juvenile turtles and increased mortality and slower growth (Ming-cheng Adams et al. 2016). Populations of Wood Turtles in New Jersey declined following application of pesticides in the 1950s and 60s according to Harding and Bloomer (1979). Additionally, low dissolved oxygen in slow-moving, eutrophic waters could affect hibernation success (Environment Canada 2016). Herbicides and pesticides sprayed during forest management and on crops may contaminate food resources of turtles. Effects of contaminants and poor water-quality may not be acute, but likely contribute sub-lethal impacts and must be considered a potential issue for Wood Turtles.

4.2.1-G: Disease

Disease is not currently considered an ongoing issue for the Wood Turtle, though the potential for epidemics lurk as a potential threat. Disease is a potential explanation for mass mortality events, though no definitive evidence of infectious disease exists (Section 4.2.1-A). Disease is relatively prevalent in captive turtles but poorly understood in wild populations (Flanagan 2015). Pathogens cause mortality for other wild turtle populations in the northeastern U.S., such as *Ranavirus* for Box Turtles and an unidentified pathogen for Bog Turtles (Jones et al. 2015). Shell disease has been identified as an emerging threat to the recovery of the Western Pond Turtle (*Actinemys marmorata*) in Washington State (WDFW 2016, Woodburn et al. 2019). Disease in captivity reduces the viability of head-starting as a recovery strategy and spread of pathogens to wild population poses serious risk for rapid loss of adult Wood Turtles (Mullin 2019). The threat of disease to Wood Turtle populations should therefore be taken very seriously.

4.2.2 Desired Future Condition

Adult mortality, removal, and sub-lethal impacts within populations are significantly reduced.

4.2.3 10-Year Goal

Goal: Identify and reduce adult mortality, removal, and sub-lethal impacts.

4.1.4 Strategies

The Wood Turtle Planning Team identified two strategies to progress toward the 10-Year Goal: 1) Reduce Human-Induced Mortality and 2) Reduce Natural/Unknown Mortality.

4.1.5 Sub-strategies

The Wood Turtle Planning Team identified sub-strategies to focus each strategy with the goal of developing targeted implementation activities with measureable targets. The strategies, sub-strategies, and how they address each sub-issue are presented in **Table 3**.

Table 3. Adult Mortality, Removal, and Sub-lethal Impacts Strategies, Sub-strategies, and Sub-issues

		Sub-issues: Adult Mortality, Removal, and Sub-lethal Impacts						
Strategy	Sub-strategy	Mass Mortality Events	Road Mortality	Predation	Illegal Collection	Forestry & Agricultural Practices	Contaminants & Water Quality	Disease
	Reduce road mortality		х			x		
Human Induced Mortality	Minimize risk of illegal take				х	x		
	Refine BMPs	x	x			x	x	
	Effects of discrete flood events	х						
Natural/Unknown Mortality	Reduce predation	X		х				
	Develop protocols for testing for disease	х						х

4.3 JUVENILE RECRUITMENT

4.3.1 Issue Statement

Wood Turtle populations generally exhibit low levels of hatchling and juvenile recruitment. The age structure in many populations display high ratios of adults to young, although this is not atypical for most turtle species (Congdon et al. 1993). Though high mortality early in life is typical for the life-history strategy of the Wood Turtle, several factors contribute to lower than expected recruitment including nest and juvenile predation, poor nesting habitat, and altered hydrology. Additionally, many of the factors impacting adult mortality such as road mortality, land management practices, disease, and environmental contamination may play a role in low recruitment (Section 4.2.1).

4.3.1-A: Nest Depredation

High nest predation rates are a major cause of low recruitment for the Wood Turtle. Inflated populations of mesopredators on the landscape (raccoon, fox, skunk, etc.) negatively impact nest success (Mitchell and Klemens 2000, Moriarty and Hall 2014). Other nest predators include flies of the families Phoridae and Sacrophagidae, which lay eggs in nest cavities and cause nest failure (Vogt 1981). Nests near roadsides are especially accessible to mesopredators and are predated at close to 100percent (WDNR 2016). Nest monitoring in northeastern Minnesota, a relatively unfragmented landscape, reported nest failure at 95 percent, with nests typically being predated within hours of being laid (Berkeland et al. 2019). Badgers were by far the most frequently observed species predating Wood Turtle nests (85 percent), with raccoons, skunks, ravens/crows, and foxes comprising the remainder (Berkeland et al. 2019). Even when nest cages were implemented, badgers learned to dig under the structures in the second year of the study.

4.3.1-B: Hatchling and Juvenile and Predation

Hatchling and juvenile predation is also a major issue for the Wood Turtle for many reasons similar to nest predation, though observation is more difficult. Predators of hatchlings and juveniles are similar to nest predators and include species such as chipmunks, numerous bird species, Snapping Turtle, and fish (Tuttle and Carroll 2005, Moriarty and Hall 2014, J. Naber, personal communication). Hatchling and juvenile predation is considered to be an issue throughout the Wood Turtle range (Harding and Bloomer 1979, Moriarty and Hall 2014, WDNR 2016). Survivorship of Wood Turtle hatchlings from emergence to winter in an Ontario population was 11 percent, with most mortality due to predation (Paterson et al. 2012). Although high mortality of young is to be expected given the Wood Turtle's life history strategy, mortality due to predation was much higher for Wood Turtles compared to Blanding's Turtles (Paterson et al. 2012). Hatchling and juvenile predation is therefore a likely contributor to poor juvenile recruitment.

4.3.1-C: Poor Nesting Habitat

Poor quality and quantity of nesting habitat is contributing to low juvenile recruitment. Destruction of quality natural sites by humans occurred historically and continues today due to development and recreation along rivers (Section 4.1.1; Crozier 2020). Nesting sites are frequently overgrown due to invasive plants or lack of disturbance (Jones et al. 2015; Crozier and Hamady 2018). Moreover, there is a lack of natural nesting habitat on the landscape (Buech et al. 1997). More artificial than natural sites were identified and monitored in a study of a northeastern Minnesota population (Crozier and Hamady 2018). Turtles are frequently attracted to roadsides and gravel/sand pits to nest, which likely act as ecological sinks. Over two years, a female in southeastern Minnesota was tracked to nesting sites in active or old agricultural fields (Hamady and Hall 2011). Additionally, the stress of longer and more

perilous travel is a risk factor for both the nesting female and successful hatchlings. Prolonged searches for suitable habitat may delay nesting. Delayed nesting can result in nest failure, as eggs do not hatch below certain temperature thresholds, and young hatchlings are unable to hibernate (Buech et al. 2004, WDNR 2016).

4.3.1-D: Altered Hydrology

Altered hydrology negatively affects Wood Turtle recruitment due to nest flooding, delayed nesting, and changes in the creation/maintenance of nesting habitat. Flooding in many parts of the Wood Turtle range is increasing in frequency, intensity, and duration, and is cited as a main contributor to nest failure (Spradling et al. 2010, Lenhart et al. 2013, WDNR 2016). Flooding was the primary cause of nest failure for populations of Wood Turtles monitored in Iowa (Spradling et al. 2010). A minority of nest sites in northeastern Minnesota failed due to flooding on one river, despite being identified as relatively flood safe, while a majority of nest sites flooded on another river (Crozier 2020). Wood Turtle eggs are thought to have low viability beyond 24 hours of flooding based on expert observations and similar turtle species; 2 or more days of inundation are thought to be lethal (Kam 1994, Spradling et al. 2010, Lenhart et al. 2013).

Altered hydrology may additionally prohibit access to nesting sites until later in the season, delaying nesting and increasing risk of nest failure (Section 4.3.1-C). Natural river dynamics cause a shift in the location of suitable nesting habitat over time, potentially providing periods of time when nest depredation rates are reduced because predators have not yet found new nesting sites. Changes in hydrology may impact these dynamics, resulting in unnaturally high predation rates of turtles using the same nesting site year after year or being forced to use artificial sites like roadsides if suitable nesting sites are not being created or maintained on the river. Climate change will contribute to changes in hydrology.

4.3.2 Desired Future Condition

Recruitment is measured at self-sustaining levels.

4.3.3 10-Year Goal

Goal: Increase recruitment of juveniles into populations.

4.1.4 Strategies

The Wood Turtle Planning Team identified two strategies to progress toward the 10-Year Goal: 1) Nest Site Level and 2) Juvenile Survival.

4.1.5 Sub-strategies

The Wood Turtle Planning Team identified sub-strategies to focus each strategy with the goal of developing targeted implementation activities with measureable targets. The strategies, sub-strategies, and how they address each sub-issue are presented in **Table 4**.

Table 4. Juvenile Recruitment Strategies, Sub-strategies, and Sub-issues

		Sub-issues: Juvenile Recruitment					
Strategy	Sub-strategy	Nest Depredation	Hatchling & Juvenile Predation	Poor Nesting Habitat	Altered Hydrology		
	Reduce nest depredation	x		x			
Nest site level	Reduce effects of flooding			х	х		
rest site level	Enhance and protect nest habitat	x	x	x	x		
	Protect nest sites from recreationalists	x	x	x			
	Head starting	x	X	x	х		
Juvenile survival	Improve hatchling and juvenile habitat		x		х		

4.4 KNOWLEDGE GAPS

4.4.1 Issue Statement

Previous research and management efforts combined with field expertise inform ongoing work and provide an excellent foundation for future Wood Turtle management in Minnesota. Although we know much about Wood Turtles, there are knowledge gaps that should be addressed to inform strategies and better address the overall conservation goal. Knowledge gaps range from analyzing existing data to researching or integrating new technologies or techniques. The Wood Turtle Planning Team identified knowledge gaps related to the previously identified issues of habitat, adult mortality, removal, and sublethal effects, and juvenile recruitment. The Wood Turtle Planning Team also identified knowledge gaps related to population status and trends, survey protocols, and outreach; these categories are not identified as issues, but they represent foundational elements of conservation that require further study (**Table 5**).

Table 5. Wood Turtle knowledge gaps identified by the Wood Turtle Planning Team.

Issue/Research Need	Knowledge Gap	Description		
	Nest site selection	Better understand nest site selection, such as how new nesting sites are selected, to encourage use of good quality sites		
	Foraging habitat selection	Understand foraging habitat selection in forest, grassland, agricultural, and other land use types		
	Hibernacula selection	Better understand hibernacula selection		
Habitat	Forest management	Better understand how forests should be managed, particularly microhabitat requirements		
	Invasive plant species	Understand the negative and positive impacts of reed canary grass and other invasive plant species		
	Movement	Research on movement distances within and from rivers		
	Climate change impact	Understand climate change and river dynamics		
	Unidentified mass mortality	Investigate cause and mitigation of unidentified mass mortality events		
Adult Mortality,	Road mortality	Evaluate effectiveness of different road mortality prevention strategies		
Removal, and Sub- Lethal Effects	Adult predation	Research predation of adults such as the impacts of maiming		
	Illegal collection	Monitor for occurrence of illegal collection		
	Contaminants and water quality	Research impact of environmental contaminants and water quality		
	Head starting	Evaluate potential for head starting, including costs and benefits		
	Nest protection	Evaluate effectiveness of different nest protection strategies		
	Hatchling and juvenile threats	Research on threats to hatchlings and juveniles		
Juvenile Recruitment	Hatchling and juvenile habitat, diet, and movement	Research hatchling and juvenile habitat use, diet, and movement patterns		
	Hatchling and juvenile hibernation	Research overwintering habitat use of hatchlings and juveniles		
	Climate change and nesting	Research impact of climate change on nesting and juvenile recruitment		

Issue/Research Need	Knowledge Gap	Description	
	Population viability	Assess and monitor population viability	
Population Status and	Population dynamics	Conduct a long-term study of adult Wood Turtles to determine causes of death and rates of mortality.	
Trends	Distribution	Assess and monitor current distribution	
	Genetic health	Collect genetic samples during surveys to evaluate the genetic viability of the population	
	eDNA	Evaluate effectiveness of eDNA in detecting presence of Wood Turtles within stream reaches	
	Marking methodology	Evaluate effectiveness of marking techniques and standardize methods	
Survey Protocols	Survey protocol	Standardize survey protocols and evaluate need for regionally specific protocols	
	Monitoring protocol	Standardize monitoring protocols for year to year comparison	
	Turtle locating dogs	Evaluate effectiveness of turtle-locating dogs	
	Genetic sample collection	Evaluate and standardize genetic sample collection methods	
Outreach	Public engagement	Research methods to educate and engage public with Wood Turtles	
	Public education	Assess strategies for public education	

4.4.2 Desired Future Condition

Acquire sufficient information to confidently make management decisions for Wood Turtle conservation.

4.4.3 10-Year Goal

917

918

919

920

921

922

923

924

925

926

927

Goal: Increase knowledge in key areas to improve effectiveness of the conservation strategies.

4.4.4 Strategies

For Knowledge Gaps, the Strategies are equivalent to the Issue/Research Need listed in **Table 5**.

4.4.5 Sub-Strategies

For Knowledge Gaps, the Sub-Strategies are equivalent to the Description listed in **Table 5**.

4.5 PARTNERSHIPS

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946947948

4.5.1 Issue Statement

Wood Turtle research, monitoring, conservation, and recovery efforts are ongoing in Minnesota and throughout the Wood Turtle range in much of the Upper Midwest. Partnerships have been or are forming among agencies, non-governmental organizations, universities and other stakeholders. These partnerships should be maintained and expanded upon to continue addressing Wood Turtle conservation within Minnesota and at a regional level.

4.5.2 Desired Future Condition

A network of partnerships exists that allows communication and coordination of information and management.

4.5.3 10-Year Goal

Goal: Enhance partnerships among Wood Turtle stakeholders in Minnesota and the Upper Midwest.

4.5.4 Strategies

The Wood Turtle Planning Team identified one strategy to progress toward the 10-Year Goal: Enhance Partnerships.

4.5.5 Sub-Strategies

The Wood Turtle Planning Team identified six sub-strategies to focus the strategy with the goal of developing targeted implementation activities with measurable targets (**Table 6**).

Table 6. Partnership Sub-strategies.

Strategy	Sub-strategy				
	Maintain communication with existing partners.				
	Hold meetings with Wood Turtle experts to exchange information.				
Enhance Partnerships	Look for opportunities to bring in new partners.				
raitheisiiips	Investigate the feasibility of establishing an Upper-Midwest monitoring program and database.				
	Pursue joint applications for funding within Minnesota and Upper Midwest.				
	Address data sensitivity.				

949

5. IMPLEMENTATION PLAN

The Implementation Plan was developed collaboratively by the Wood Turtle Planning Team and Northeast and Southeast regional Work Groups. The Southeast and Northeast Work Groups used the strategies and sub-strategies developed by the Planning Team and completed worksheets detailing region-specific targeted implementation activities, milestones, tracking metrics, prioritization, and target start dates for each sub-strategy. The Work Group worksheets are included as an Appendices. The central Minnesota Wood Turtle populations were included in the Northeast Work Group.

1. Targeted Implementation Activities:

The targeted implementation activities are the implementation activities that address specific sub-strategies. These are countable projects, activities, services, or products that can be tracked as progress towards achieving the goals. Some activities may address more than one issue and achieve more than one goal.

2. Milestones:

Milestones will assess progress of sub-strategies based on specific steps.

3. Tracking Metrics:

Depending on the activity, tracking metrics may include a yes/in progress/no assessment of activity completion or specific quantities of activity outcomes.

4. **Prioritization:**

Prioritization was assigned to sub-strategies based on regional Work Group expertise.

5. Target Start Date:

A target start date within the next 10 years was assigned to sub-strategies based on regional Work Group expertise. Some sub-strategy activities are already or will be ongoing.

The Implementation Plan is presented in Tables 8-20 and provides examples of targeted implementation activities and measureable targets for all sub-strategies. The full list of targeted implementation activities and measurable targets for each sub-strategy is included for each region in Appendices A and B. Key river stretches were also identified for both regions to help prioritize location of implementation activities. Descriptions of these key stretches are included in Appendices C and D.

Tracking performance toward targets is an important step to the Implementation Plan. Performance toward targets will be assessed every two years by documenting completed activities according to a template comparable to the Conservation Partners Legacy Program Annual Report. After five years, work to date will be evaluated with potential for re-prioritization, timeline adjustment, and additional activities.

Implementation activities generally rely on grant funding. The Implementation Plan can be used to determine what activities need to be completed, how to prioritize, and which grants are applicable for specific activities.

A list of potential and existing partners was compiled by the Wood Turtle Planning Team (**Table 7**). Partners are encouraged to use and participate in the Implementation Plan. Partners can use the Implementation Plan to prioritize activities and apply for grant funding. Further, partners can track performance toward targets via the activity documentation assessment to be completed every two years.

791 Table 7. List of potential and existing partners.

Potential and Existing Partners
Conservation Planning Specialist Group (CPSG) of IUCN
County Governments (e.g. Parks Departments)
Minnesota Board of Soil and Water Resources (BWSR)
Minnesota Department of Transportation
Minnesota Land Trust
Minnesota Zoo
MNDNR Divisions: Ecological and Water Resources, Parks & Trails, Fish & Wildlife, Forestry,
Enforcement
National Park Service
Private Landowners
The Nature Conservancy
Tribal Governments
Trout Unlimited
U.S. Fish and Wildlife Service
U.S. Forest Service
Universities
Watershed Management Organizations and Partnerships
Upper Midwest DNR agencies (WDNR, IDNR, MI DNR)
Place A
Place C

5.1 ISSUE: HABITAT

Table 8. Implementation Plan for the River System Management strategy.

ISSUE:	Habitat Programme Programm								
STRATEGY:				River System Management					
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Protect habitat in key river stretches	SE	High	1-2 years	Using available data, identify key areas for protection. Key areas may include sections of the river with large numbers of Wood Turtles, good habitat, important nest sites, or where there are existing protection efforts that can be expanded on.	Compile known data for each main population to identify key river stretches for protection. Based on these data, recommendations are made	# rivers evaluated			
	NE	High	1-2 years		on the highest priority river stretches and parcels for protection and potential protection options. At the highest priority sites, land is protected as opportunity allows.	# parcels protected			
Increase terrestrial habitat connectivity	SE	High	1-2 years	species enforcement of shareline ordinances, restoring high	Compile known data for each main population to identify barriers to movement and opportunities for increasing habitat connectivity. Based on these data, recommendations are made	# rivers evaluated			
	NE	Medium	3-5 years		on the highest priority locations for reducing threats and increasing habitat connectivity and potential ways to address the issue. At the highest priority sites, habitat connectivity efforts are conducted.	# areas where connectivity is restored			
Sustain free-flowing natural river systems	SE	High	1-2 years	Identify ways to increase river connectivity. Consider techniques such as fish passage structures, terrestrial safe passage areas, removal of dams, restoring floodplains, etc.	Compile known data for each main population to identify locations with physical river connectivity issues. Based on these data, recommendations are made	# rivers evaluated			
	NE	Medium	3-5 years		on the highest priority areas with river connectivity issues. At the highest priority sites, river connectivity efforts are conducted.	# areas where connectivity is restored			

ISSUE:									
STRATEGY:	RATEGY: River System Management								
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Reduce agricultural overland and sub-surface runoff	SE	Medium	6-10 years	Identify targeted areas for improving practices to reduce runoff.		# planning efforts engaged			
	NE	Low	6-10 years	Consider practices such as increased buffer zones and retention ponds/wetlands to hold runoff	Participate in watershed planning efforts				
Incorporate Wood Turtle needs into landscape scale planning efforts	SE	High	1-2 years	management projects on watershed health. development of One Watershed C	Participate in or provide recommendations to the development of One Watershed One Plan (upcoming plans include Northeast K and	e # guidance/planning efforts engaged			
	NE	Medium	1-2 years						

DRAFT Wood Turtle Conservation Plan

Table 9. Implementation Plan for the Site Habitat strategy.

ISSUE:	Habitat Habitat								
STRATEGY:				Site Habitat					
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Identify, create, restore, and enhance nesting habitat	SE	High	3-5 years	Identify nesting sites and/or potential nesting sites using surveys and GIS data. Focus on natural nesting sites, important nesting sites, and important stretches of river for nesting.	Compile known data for each main population on nesting sites, potential nesting sites, turtle use, predation, and flooding risk.	# rivers evaluated			
	NE	High	1-2 years	Restore or enhance nesting sites by removing invasive species and encroaching vegetation. Consider creating nesting habitat in areas that lack suitable habitat or have habitat connectivity issues.	Conduct field surveys to identify key nesting sites, particularly natural sites. At the highest priority nesting sites, habitat improvement efforts are conducted.	# sites created, restored, or enhanced			
Identify, create, restore, and enhance foraging habitat	SE	High	1-2 years	Identify preferred foraging habitat using telemetry and/or GIS data. Manage for high quality native plant communities with	Compile known data for each main population on potential foraging habitat. Based on these data, recommendations are made on the highest priority areas where foraging	e # rivers evaluated			
	NE	Low	6-10 years	abundant herbaceous forage. Maintain or enhance species and structural diversity as appropriate of the native plant community. Consider techniques such as artificial seeding, underplanting under-represented species, release of advanced regeneration, prescribed fire, and reducing invasive species.	habitat could be enhanced. In the highest priority locations, conduct habitat improvement efforts.	# sites restored or enhanced			
Identify, create, restore, and enhance hibernacula habitat	SE	Low	1-2 years	If lacking, place trees in the river adjacent to important nesting sites for overwinter habitat for hatchlings.	Nesting sites where habitat enhancement work has occurred also has adjacent overwintering habitat for hatchlings.	# sites where management activities occurred			
	NE	Low	6-10 years	Discuss trail maintenance with DNR Parks and Trails. Recommend leaving fallen trees in the river as much as possible.	Recommendations provided to DNR Parks and Trails.	# outreach efforts to DNR Parks and Trails			

ISSUE:	Habitat Page 1997 - Page 1997								
STRATEGY:	TEGY: Site Habitat								
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Improve site level management recommendations	SE	High	1-2 years	Revise forest management recommendations for Wood Turtles using results from the cSWG projects as well as other sources of information.	Forest management recommendations are revised and BMPs developed (i.e., DNR guidance document). Environmental review recommendations for Wood Turtles are revised (i.e., DNR)	# documents			
	NE	High	1-2 years	Develop BMPs for Wood Turtles in SE MN Work with environmental review staff and MNDOT to revise recommendations for development and road projects.	Wood Turtles are revised (i.e., DNR environmental fact sheet). Guidance documents are distributed to land managers (DNR staff, county land departments, USFS, private landowners, etc.)	completed			

DRAFT Wood Turtle Conservation Plan

5.2 ISSUE: ADULT MORTALITY, REMOVAL, AND SUB-LETHAL IMPACTS

Table 10. Implementation Plan for the Human Induced Mortality strategy.

ISSUE:	Adult Mortality, Removal, and Sub-Lethal Impacts								
STRATEGY:				Human Induced Mortality					
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Reduce road mortality NE High	SE	Medium	3-5 years	Using available data, identify locations with road mortality issues or potential issues. Work with MNDOT and county land departments to identify	Compile known data for each main population to identify areas with road mortality and potential road mortality issues.	# rivers evaluated			
	1-2 years	barriers, turtle crossing signs, reducing the attractiveness of	At the highest priority sites, road mortality surveys are conducted and/or efforts are made to modify road crossings in collaboration with the appropriate road authority.	# areas with road crossing modifications					
Minimize risk of illegal take	SE	Medium	1-2 years	and to watch for poachers. Educate citizens about not taking turtles home and the	A decision is made about how to engage citizens in Wood Turtle conservation. Conservation officers are provided information on Wood Turtle populations.	# outreach efforts to public # outreach efforts to conservation officers			
	NE	High	1-2 years						
Refine BMPs	SE	Medium	3-5 years	Revise forest management recommendations for Wood Turtles using results from the cSWG projects as well as other sources of information. Forest management recommendation revised (i.e., DNR forest management guidelines).		# BMP recommendations			
	NE	High	1-2 years	mining operations. Determine adequate buffer widths for agricultural fields and livestock. Assess distance traveled by radio-tagged turtles to develop preferred buffer widths.	BMPs are developed for mining operations. Buffer widths are determined.	revised/developed			

Table 11. Implementation Plan for the Natural/Unknown Mortality strategy.

ISSUE:									
STRATEGY:				Natural/Unknown Mortality					
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
SE Effects of discrete flood events NE	SE	High	1-2 years	Utilize telemetry and/or marked turtles to assess impacts of flood events on turtles		# important backwater areas			
	NE	Low	6-10 years	Identify potential backwater areas or eddies where turtles could escape the flood waters and ultimately return to home range	Conduct study	identified			
Reduce predation NE	SE	Medium	3-5 years	Assess the impacts of predation on the population. Develop recommendations to reduce adult mortality.	Conduct study	# recommendations developed			
	NE	Low	6-10 years						
Develop protocols for testing for disease	SE	Low	3-5 years	Collect dead turtles found during survey activities and submit for testing when feasible. Collect samples from live turtles (sick and healthy individuals) for testing.	When large die-offs occur, samples are collected and tested within 1-2 years of the event.	# samples sallested			
	NE	High	1-2 years			# samples collected			

5.3 ISSUE: JUVENILE RECRUITMENT

Table 12. Implementation Plan for the Nest Site Level strategy.

ISSUE:				Juvenile Recruitment		
STRATEGY:				Nest Site Level		
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics
Reduce nest depredation	SE	High	1-2 years	Using available data, identify locations where nest depredation is a problem or is likely a problem. Conduct field surveys or use remote cameras to determine the extent of the problem.	Compile known data for each main population on nest depredation, predators, and the most important nesting sites. Based on these data, recommendations are made on the most critical areas for protecting	# rivers evaluated # nests or sites protected
	NE	High	1-2 years	Protect nests from depredation using techniques such as nest cages and electric fences. Consider if predator control could be a useful technique.	nests from depredation. Consider prioritizing	# successful nests (hatchlings)
Reduce effects of flooding	SE	High	1-2 years	Using available data, identify locations where nest flooding is an issue or a potential issue. Create hydrologic models to predict flooding risk and assess	Compile known data for each main population on nest flooding and turtle use. At the highest priority sites, expand nesting sites into flood-safe areas where feasible.	# rivers evaluated
	NE	Medium	3-5 years	impacts of climate change on flooding. On nest sites with flooding concerns, consider expanding the nest site to include additional flood-safe habitat.		# sites expanded
Enhance and protect nest habitat	SE	High	1-2 years	Identify high priority nesting sites (with an emphasis on natural sites) and monitor turtle use, predation rates, and flooding. Restore and enhance the habitat quality on the highest priority nesting areas Identify locations that are sinks in terms of high nest failure rates (roadsides, agricultural fields, active gravel pits, etc.).	Compile known data for each main population on high priority nesting sites, stretches of river that lack nesting habitat, or nesting sites that are at high risk of development.	# rivers evaluated
	NE	High	1-2 years	Determine if there are ways to reduce turtle use of these areas, create nesting habitat nearby, or re-direct turtles to higher quality areas. Identify stretches of river where good nesting habitat may be lacking, particularly where turtles nest on roads. Consider creating nesting habitat.	turtle nesting, predation, flooding, and hatching	# long-term monitoring sites # successful nests (hatchlings)

ISSUE:		Juvenile Recruitment								
STRATEGY:		Nest Site Level								
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics				
Protect nest sites from recreationalists NE	Low	3-5 years	Identify high priority nesting sites that are used by recreationists. Conduct field surveys or use remote cameras to determine	Compile known data for each main population on locations where recreation is a problem.	# rivers evaluated					
	NE	Medium	3-5 years	the extent of the problem. Reduce recreational pressure at high priority sites. Block access to nesting sites, consider seasonal closures, contact COs about illegal activity.	At the highest priority sites, efforts are made to reduce recreation on nest sites.	# sites protection efforts				

Table 13. Implementation Plan for the Juvenile Survival strategy.

ISSUE:				Juvenile Recruitment				
STRATEGY:				Juvenile Survival				
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics		
	SE High 1-2 years Identify areas with high potential for successful establishment	Compile known data for each main population on relevant to potential headstart establishment. Based on these data, recommendations are	# rivers evaluated # headstarts successfully reared and released					
Head starting	NE	Low	6-10 years	Remove eggs from wild nests: incubate eggs and then release young shortly after hatching versus raise ex-situ for period of time (1-2 years) and then release.	made on the highest priority areas for headstarting. Release headstarts at priority areas.	# headstarts surviving in wild after X number of years		
Improve hatchling and juvenile habitat	SE	Medium	6-10 years	Identify potential hatchling and juvenile habitats.	Compile known data on hatchling and juvenile habitat requirements.	# rivers evaluated		
	NE	Low	6-10 years	Assess if these habitats could be enhanced, such as removing invasive species.	Determine locations where habitat could be enhanced. Focus on areas with high quality nesting. Conduct habitat management.	# sites managed		

5.4 ISSUE: KNOWLEDGE GAPS

Table 14. Implementation Plan for the Habitat strategy.

ISSUE:				Knowledge Gaps		
STRATEGY:				Habitat		
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics
Understand benefits and consequences of reed canary	SE	Low	6-10 years	Determine habitat selection or avoidance in areas infested with invasive species.	Establish research partners	Project conducted
grass and other invasives	NE	Medium	6-10 years	Determine how much impact invasive species may have on affecting habitat.	Acquire funding	Project conducted
Understand foraging habitat selection in forest, grassland,	SE	Medium	3-5 years	Analyze the cSWG telemetry data to determine foraging habitat selection in relationship to habitat availability. Conduct field surveys to quantify the vegetation characteristics in heavily used foraging areas (amount of	Establish research partners	Decise to a substant
agriculture, and other land use	NE	High	1-2 years	downed woody debris, herbaceous vegetation, canopy closure, etc.). Use telemetry to assess habitat use in rivers with no habitat information.	Acquire funding	Project conducted
Better understand how habitat could be managed,	SE	High	6-10 years	Research project or monitoring in an adaptive mgmt. framework Develop protective strategies for agricultural areas used by turtles	Establish research partners	Project conducted
habitat could be managed, particularly for microhabitat needs	NE	Medium	3-5 years	Determine important habitat characteristics that could be managed for during typical forest management activities. Determine how turtles respond to different forest management practices.	Acquire funding	Troject conducted

ISSUE:				Knowledge Gaps						
STRATEGY:		Habitat Habitat								
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics				
Better understand nesting site selection NE	SE	High	3-5 years	Compare use of created sites vs. sites Wood Turtles traditionally have used; how do we get them to use the created sites? What kinds of created sites will they prefer over traditionally used sites?	Establish research partners					
	Medium	3-5 years	Assess if size of site should be factored into the research on nest site effectiveness Identify characteristics of successful nest sites, nest site fidelity, and the important of staging habitat.	Acquire funding	Project conducted					
Better understand hibernacula selection	SE	Low	6-10 years	Using the cSWG telemetry data, collect and analyze data to quantify river and habitat features at hibernacula sites.	Establish research partners	Project conducted				
	High	1-2 years	Assess if hibernacula sites may be limiting. If so, make recommendations on how to better manage for hibernacula sites.	Acquire funding	Project conducted					
	SE	High	3-5 years	Use cSWG data to assess movements up and downstream on the river, movements from the river onto land, determine home range, and examine typical movement patterns between the hibernacula site, nesting site, and foraging sites.	Fetablish receased northers					
Research on movement distances				Examine the cSWG data to see if there appear to be differences in turtle habitat use and movement patterns	Establish research partners Acquire funding	Project conducted				

between the main river and tributaries.

smaller tributaries.

nest sites.

availability.

safe.

From this, determine if more telemetry data is needed to quantify habitat use and movement patterns of turtles in

Establish long-term monitoring sites to assess flooding of

Create hydrologic models to assess the impacts of climate

On nest sites with flooding concerns, consider expanding the

nest site to include additional habitat that is typically flood-

change and changes in hydrology on nesting habitat

1-2 years

6-10 years

6-10 years

NE

SE

NE

Understand climate change

and river dynamics

High

High

Medium

Page | 48

Acquire funding

Establish research partners

Acquire funding

Project conducted

Table 15. Implementation Plan for the Adult Mortality strategy.

ISSUE:	Knowledge Gaps									
STRATEGY:				Adult Mortality						
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics				
Investigate unidentified mortality events (e.g. disease)	SE	Low	1-2 years	Consult with the National Wildlife Health Center and other disease labs regarding proper protocols, such as where should samples be sent, how to collect and store samples, etc. Establish a protocol.	Samples are sent for testing within 1-2 years of a large mortality event.	Decises and outside				
	NE	High	1-2 years	Conduct research on possible causes of the mortality event (water level changes, etc.). Conduct literature search for information related to turtle mortality in general	Establish research partners Acquire funding	Project conducted				
Effectiveness of different road mortality prevention	SE	Medium	1-2 years	Experiment with different barrier designs, materials, and ways to deal with private lands to see what is most effective.	Establish research partners	Project conducted				
strategies	NE	Medium	3-5 years		Acquire funding	-				
Research cause of injury and mortality of adults	SE	Low	3-5 years	Determine the importance of different causes of adult	Establish research partners	Project conducted				
(i.e. predation, mowing)	NE	Low	6-10 years	mortality and injury.	Acquire funding					
Monitor if illegal collection is occurring	SE	Medium	1-2 years	Assess sites for vulnerability to collecting. Monitor priority	Establish research partners	Project conducted				
	NE	Low	6-10 years	sites with game cameras.	Acquire funding					

ISSUE:	Knowledge Gaps									
STRATEGY:	Adult Mortality									
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics				
Research on impacts of	SE	Low	3-5 years	Collect environmental and turtle samples to assess	Establish research partners	Project conducted				
environmental contaminants	NE	Low	6-10 years	presence/levels of selected chemicals.	Acquire funding					

Table 16. Implementation Plan for the Juvenile Recruitment strategy.

ISSUE:				Knowledge Gaps		
STRATEGY:				Juvenile Recruitment		
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics
Effectiveness of different nest protection strategies	SE	High	1-2 years	Additional testing of electric fences is needed. Install electric fences on several more sites to confirm they are effective in different situations (particularly sites with high predation or different types of predators).	Establish research partners	Project conducted
	NE	High	1-2 years	Compare depredation and productivity rates of protected vs. control nests. Refine our estimates of depredation rates for unprotected nests.	Acquire funding	Troject conducted
Research on threats to hatchlings and juveniles	SE	Medium	3-5 years	Using telemetry, track hatchlings and juveniles to determine potential threats.	Establish research partners	Duciest and dusted
	NE	Medium	3-5 years	Necropsy deceased juveniles to determine cause of death when feasible.	Acquire funding	Project conducted
Research hatchling and juvenile habitat use, diet,	SE	High	3-5 years	Using telemetry, examine habitat use and movement	Establish research partners	Project conducted
and movement patterns	NE	High	3-5 years	patterns of hatchlings and juveniles.	Acquire funding	Project conducted
Overwintering habitat use of	SE	Medium	3-5 years	Using telemetry, determine characteristics of overwintering	Establish research partners	Duciest and dusted
hatchlings and juveniles	NE	Low	6-10 years	sites of hatchlings and juveniles. Determine if overwintering habitat is limiting.	Acquire funding	Project conducted

DRAFT Wood Turtle Conservation Plan

ISSUE:	Knowledge Gaps								
STRATEGY:	RATEGY: Juvenile Recruitment								
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Research impact of climate change on nesting and juvenile recruitment	SE	High	1-2 years	Determine habitat use of juveniles, and whether they are moved downstream after flooding events and if there is correlation between displacement and extent of flooding. Install water level loggers at nest sites to measure water	Establish research partners				
	NE	Medium	6-10 years	elevations and flood duration. Use hydrologic models to predict how climate change will affect the availability of nesting habitat and flooding of nest sites.	Acquire funding	Project conducted			

Table 17. Implementation Plan for the Survey Protocol strategy.

ISSUE:	Knowledge Gaps									
STRATEGY:				Survey Protocols						
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics				
Effectiveness of eDNA surveys	SE	High	1-2 years	Determine best timing of water collection (i.e. when would eDNA be most concentrated). Explore availability of DNA sequencing information for Wood Turtles (to ensure primers have been developed and known	Establish research partners	Project conducted				
	NE	Low	6-10 years	sequences can be matched to our test samples)	Acquire funding	Project conducted				
Evaluate effectiveness of marking techniques and standardize methods used NE	SE	Medium	3-5 years	Using existing data, compare error rates in identifying recaptures using different marking methods. Develop a standard marking protocol by river.	Compile data Analyze data	Recommendations on standard marking protocol				
	NE	Low	6-10 years							
Standardizing survey protocols	SE	High	3-5 years	Describe methods already being utilized in MN surveys during different seasons and locations or using various approaches (i.e., watercraft, hiking, cameras, dogs, etc.) Describe conditions under which each approach is optimal and note conditions that prevent efforts (i.e. vegetation	Protocol drafted and reviewed by turtle researchers within/outside DNR	Protocol finalized				
	NE	Medium	3-5 years	and note conditions that prevent efforts (i.e. vegetation height, water levels, temperature, etc.) Develop protocols for assessing occupancy of undersurveyed rivers and for monitoring population contraction and expansion.	Datasheets updated based on standardized protocol	Protocol finalized				

ISSUE:				Knowledge Gaps		
STRATEGY:				Survey Protocols		
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics
	SE	Medium	6-10 years	Assess if the monitoring protocol developed for the Northeast L River is effective for the other rivers in the northeast. If not, work with U of M to modify the protocol for use on other rivers.		Donton I find to V
Standardizing monitoring				Work towards a standard or comparable protocol for the NE and SE populations.	A standard protocol is finalized (could be river specific).	Protocol finalized for X number of locations
protocols	NE	High	High 3-5 years	Work towards a standard or comparable protocol for the region (WI, IA, MI, MN).	A database is created for-Minnesota	Database is created
			Create a statewide database for MN Wood Turtle monitoring data (including a photo database)			
	SE	High	3-5 years	Pursue funding to train a dog specifically for detecting Wood Turtles (i.e. LCCMR funding: MN Zoo)	Acquire a trained dog, or acquire a dog and train it to detect Wood Turtles Followed up on progress of dog ability to locate	Dog used for surveys
Effectiveness of turtle dogs	NE Low	Low	6-10 years	Continue to assess working with local or regional handlers Test dog at locations with known healthy turtle populations (or sites with radio-tagged turtles)	Wood Turtles Radio-tagged Wood Turtles are independently and consistently detected by dog without guidance by handler	Effectiveness of dogs assessed
Evaluate and standardize genetic sample collection methods NE	SE	High	1-2 years	Conduct literature review of sampling protocol a. what: blood samples, tissue, shell shavings, etc. b. where: caudal vein, nuchal sinus cavity, or other locations	Literature compiled on what samples to collect and where to collect them Sampling methods tested on turtles (not	Protocol finalized
	NE	Low	6-10 years	Test sampling options on MN turtles Develop standardized approach for collecting and analyzing samples based on testing results	necessarily Wood Turtles) Standardized approach drafted and reviewed by turtle researchers and geneticists	Trococor municed

DRAFT Wood Turtle Conservation Plan

Table 18. Implementation Plan for the Population Status and Trends strategy.

ISSUE:	Knowledge Gaps								
STRATEGY:				Population Status and Trends					
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Assess and monitor population viability NE	SE	High	6-10 years	Set up long-term monitoring sites on each main population.	Long-term monitoring sites are established on each main population. Baseline data is collected on each main	# rivers with long-term monitoring sites established			
	NE	High	3-5 years	survivorship, and age class structure.	population. Population modeling efforts continue with additional data.	# sites re-surveyed every 5 years			
Assess and monitor	SE	High	1-2 years	Determine the highest priority under-surveyed areas. Focus on rivers with good habitat and under-surveyed areas near known populations. Consider re-surveying old or questionable NHIS records to determine if populations exist in those areas.	ryed areas near and or an open state of the highest priority under-surveyed rivers are surveyed. Occupancy monitoring is initiated to assess population expansion or contraction on each main population.	# under-surveyed river stretches surveyed # populations surveyed for expansion/contraction			
current distribution	NE	High	1-2 years	Determine the highest priority areas for monitoring contraction and expansion of each main population. Conduct occupancy surveys at regular intervals in the highest priority areas.					
Take genetic samples during surveys to evaluate	SE High 3-5 years health is a priority	Determine if there are rivers in which assessing genetic health is a priority Consider using genetic samples to confirm that populations	The highest priority rivers are assessed for genetic health	# priority rivers for sampling					
population genetic viability	NE	Medium	6-10 years	are isolated from each other. Determine the protocol for collecting genetic samples, storage of samples, and number of samples needed.	Sampling protocol developed	# populations sampled			
Long-term study of	SE	*	*	Conduct a long-term study of adult Wood Turtles to determine causes of death and rates of mortality to better understand relative threats to turtles.	Establish research partners	Project conducted			
population dynamics and mortality	NE	High	3-5 years		Acquire funding	Project conducted			

Table 19. Implementation Plan for the Outreach strategy.

ISSUE: Knowledge Gaps									
STRATEGY:				Outreach					
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Research ways to educate	SE	Low	6-10 years	Determine what has been effective outreach for other at-risk species. Conduct and assess the effectiveness of outreach programs, news releases, fundraising efforts, etc.	Complete review of public outreach strategies	# outreach efforts to public conducted			
and engage public with Wood Turtles	NE	Low	6-10 years						
Strategies for public education	SE	Low	6-10 years	Determine strategies for educating private landowners about what they can do on their lands to help Wood Turtles.	Develon strategies	# outreach efforts to private landowners conducted			
	NE	Medium	6-10 years						

^{*}To be considered for the southeast region in following 10-year plan period.

5.5 ISSUE: PARTNERSHIPS

Table 20. Implementation Plan for the Enhance Partnerships strategy.

ISSUE:				Partnerships					
STRATEGY:			Enhance Partnerships						
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics			
Maintain communication with existing partners	SE	High	1-2 years	Conduct an annual pre-field season conference call to discuss upcoming field season activities and topics of interest. Keep partners informed by sharing reports, pertinent data, and project proposals.	Annual pre-field season coordination meeting occurs.	# annual meetings conducted			
	NE	High	1-2 years						
Hold meetings with Wood Turtle experts to exchange information	SE	Medium	1-2 years	Collaborate with partners to organize a regional Wood Turtle workshop	Workshop is held.	# workshops conducted			
	NE	Medium	3-5 years						
Look for opportunities to bring in new partners	SE	Medium	1-2 years	Pursue opportunities to engage with potential partners Reach out to local conservation groups to explore potential collaborations.	Opportunities to connect with new partners occurs.	# new partnerships formed			
	NE	Medium	3-5 years						
Investigate the feasibility of establishing an Upper-Midwest monitoring program and database	SE	Medium	3-5 years	Coordinate with partners to discuss the feasibility of a regional monitoring program. Identify a project lead to oversee data management.	Discussions with regional partners occurs.	# meetings conducted			
	NE	Low	6-10 years						
Pursue joint applications for funding within Minnesota and Upper Midwest	SE	High	1-2 years	Work with partners to identify potential sources of funding. Apply for grants, cooperatively with partners when possible.	Grant proposals are submitted.	# grants applied for			

DRAFT Wood Turtle Conservation Plan

ISSUE:	Partnerships									
STRATEGY:	Enhance Partnerships									
Sub-strategy	Region	Prioritization	Target Start Date	Example Targeted Implementation Activities	Example Milestones	Example Tracking Metrics				
	NE	High	1-2 years	Pursue internal funding sources so that a consistent source of funds for plan implementation are available.						
Address data sensitivity	SE	High	1-2 years	Discuss the sensitivity of Wood Turtle data with land managers (i.e., county land managers, DNR land managers) and project partners.		# outreach efforts				
	NE	Medium	3-5 years	Data are stored in a secure location. Define how data is shared without compromising the population Develop data accessibility and sharing plan	conducted					

DRAFT Wood Turtle Conservation Plan

LITERATURE CITED

Agha, M., S.J. Price, A.J. Nowakowski, B. Augustine, and B.D. Todd. 2017. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather. Diseases of Aquatic Organisms 124:91-100.

Akre, T.S.B. 2002. Growth, maturity, and reproduction of the Wood Turtle, *Clemmys insculpta* (LeConte 1830) in Virginia. Dissertation, George Mason University, Fairfax, Virginia, USA.

Akre, T.S.B. and C.H. Ernst. 2006. Population dynamics, habitat use, and home range of the Wood Turtle, *Glyptemys* (=*Clemmys*) *insculpta*, in Virginia. Unpublished report submitted to the Virginia Department of Game and Inland Fisheries.

Arvisais, M., J.C. Bourgeois, E. Lévesque, C. Daigle, D. Masse, and J. Jutras. 2002. Home range and movements of a Wood Turtle (*Clemmys insculpta*) population at the northern limit of its range. Canadian Journal of Zoology 80(3):391-398.

Arvisais, M., E. Lévesque, J.C. Bourgeois, C. Daigle, D. Masse, and J. Jutras. 2004. Habitat selection by the Wood Turtle (*Clemmys insculpta*) at the northern limit of its range. Canadian Journal of Zoology 82:391-398.

Berkeland, M. S., M. M. Cochrane, D. J. Brown, and R. Moen. 2019. Wood Turtle nest monitoring and mortality surveys. University of Minnesota NRRI Technical Report No. NRRI/TRC-2019-71 Release 1.0.

Brooks, R.J., Brown, G.P., and Galbraith D.A. 1991. Effects of a sudden increase in natural mortality of adults on a population of the common snapping turtle (*Chelydra serpentine*). Canadian Journal of Zoology 69(5):1314-1320.

Brown, D. J., M. Schrage, D. Ryan, R. Moen, M. D. Nelson, and R. R. Buech. 2015. *Glyptemys insculpta* (Wood Turtle): Longevity in the wild. Herpetological Review 46(2) 243-244.

Brown, D.J. M.D. Nelson, D.J. Rugg, R.R. Buech, and D.M. Donner. 2016. Spatial and temporal habitat-use patterns of Wood Turtles at the western edge of their distribution. Journal of Herpetology 50(3):347-356.

Brown, D.J., M. M. Cochrane, and R. A. Moen. 2017. Survey and analysis design for Wood Turtle population monitoring. Journal of Wildlife Management 81(5):868-877.

Buech, R.R, and M.D. Nelson. 1991. How to create Wood Turtle nesting areas. USDA Forest Service, St. Paul, MN.

Buech, R.R. 1992. Streambank stabilization can impact Wood Turtle nesting areas. 54th Midwest Fish and Wildlife Conference, Abstract 190 p. 260. 6-9 December 1992, Toronto, Canada.

Buech, R.R. 1995. The Wood Turtle: its life history, status, and relationship with forest management. Proceedings of the 1995 NCASI Central Lake States Regional Meeting pp 118-27.

Buech, R.R., L.G. Hanson, and M.D. Nelson. 1997. Identification of Wood Turtle nesting areas for protection and management. Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles – An International Conference pp. 383-391.

Buech, R.R., M.D. Nelson, L.G. Hanson, and M.A. Ewert. 2004. *Clemmys insculpata* (Wood Turtle) hatchling failure. Herpetological Review 35:54.

Castellano, C.M., J.L. Behler, and G.R. Ultsch. 2008. Terrestrial movements of hatchling Wood Turtles (*Glyptemys insculpta*) in agricultural fields in New Jersey. Chelonian Conservation and Biology 7(1):113-118.

Catrysse, J., E. Slavik, J. Choquette, A.E. Leifso, and C.M. Davy. 2015. Mass mortality of northern map turtles (*Graptemys geographica*). Canadian Field-Naturalist 129(1):80-83.

Chadwick M.A., D.R. Dobberfuhl, A.C. Benke, A.D. Huryn, K. Suberkropp, and J.E. Thiele. 2006. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecological Applications 16(5):1796-1807.

Cochrane, M. M., D. J. Brown, and R. Moen. 2018. Wood Turtle capture and telemetry. University of Minnesota NRRI Technical Report No. NRRI/TR-2017-05 Release 1.0.

Cochrane, M., D.J. Brown, M.D. Nelson, R.R. Buech, M. Schrage, D. Ryan, and R.A. Moen. 2018. Status of a *Glyptemys insculpta* (Wood Turtle) population in northeastern Minnesota. Herpetological Conservation and Biology 13(1):273-282.

Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2007. COSEWIC assessment and update status report on the Wood Turtle (Glyptemys insculpta) in Canada. Accessed 01 April 2019.

Compton, B.W. 1999. Ecology and conservation of the Wood Turtle (*Clemmys insculpta*) in Maine. Thesis, University of Maine, Orono, USA.

Compton, B.W., J.M. Rhymer, and M. McCollough. 2002. Habitat selection by Wood Turtles (*Clemmys insculpta*): an application of paired logistic regression. Ecology 83:833-843.

Congdon, J.D., A.E. Dunham, and R.C. van Loben Sels. 1993. Delayed sexual maturity and demographics of Blanding's Turtles (*Emydoidea blandingii*): implications for conservation and management of long-lived organisms. Conservation Biology 7(4):826-833.

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 2017. Appendices I, II, and III. Accessed 01 April 2019.

Crozier, G. 2018. Upper Midwest Riverine Turtle Habitat Improvement Project final report. Final comprehensive report for the U.S. Fish and Wildlife Service for Competitive State Wildlife Grant MN F14AP00028.

Crozier, G. and M. Hamady. 2018. Minnesota Wood Turtle final report: Upper Midwest riverine turtle habitat improvement project. Minnesota final report for the U.S. Fish and Wildlife Service for Competitive State Wildlife Grant MN F14AP00028.

Crozier, G. 2020. Minnesota Wood Turtle final report: Upper Midwest turtle conservation. Minnesota final report for the U.S. Fish and Wildlife Service for Competitive State Wildlife Grant MN F17AP00027.

District Department of the Environment. 2015. District of Columbia Wildlife Action Plan. District Department of the Environment, District of Columbia.

Elmqvist, T., W.C. Zipperer, and B. Güneralp. 2016. Urbanization, habitat loss, biodiversity decline: solution pathways to break the cycle. In: K. Seta; W.D. Solecki; C.A. Griffith (Eds.), Routledge Handbook of Urbanization and Global Environmental Change. London and New York.

Environment Canada. 2016. Recovery strategy for the Wood Turtle (*Glyptemys insculpta*). Species at Risk Recovery Strategy Series. Environment Canada, Ottawa.

Ernst, C.H. 1986. Environmental temperatures and activities in the Wood Turtle, *Clemmys insculpata*. Journal of Herpetology 20:222-229.

Ernst, C.H. 2001. Some ecological parameters of the Wood Turtle, *Clemmys insculpta*, in southeastern Pennsylvania. Chelonian Conservation and Biology 4:94-99.

Ernst, C.H., and J.E. Lovich. 2009. Turtles of the United States and Canada. Johns Hopkins University Press, Baltimore, Maryland, USA.

Erpelding B. 1998. Wood Turtle population surveys in the Southeast B River watershed.MNDNR Nongame Wildlife Program Report.

Flanagan, J.P. 2015. Chelonians (Turtles, Tortoises). In. R.E. Miller; M.E. Fowler (Eds.), Fowler's Zoo and Wild Animal Medicine, Volume 8. Elsevier Saunders, St. Louis, Missouri.

Foscarini, D.A. Demography of the Wood Turtle (*Clemmys insculpta*) and habitat selection in Maitland River valley. Thesis, University of Guelph, Ontario, Canada.

Frelich, L.E., and P.B. Reich. 1995. Spatial patterns and succession in a Minnesota southern-boreal forest. Ecological Monographs 65:325-46.

Frelich, L.E., C.M. Hale, P.B. Reich, A.R. Holdsworth, S. Scheu, L. Heneghan, and P.J. Bohlen. 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions 8:1235-1245.

Garber, S.D. and J. Burger. 1995. A 20-yr study documenting the relationship between turtle decline and human recreation. Ecological Applications 5(4):1151-1162.

Gibbs, J.P. and W.G. Shriver. 2002. Estimating the effects of road mortality on turtle populations. Conservation Biology 16(6):1647-1652.

Greaves, W.F. and J.D. Litzgus. 2008. Chemical, thermal, and physical properties of sites selected for overwintering by northern Wood Turtles (*Glyptemys insculpta*). Canadian Journal of Zoology 86:659-667.

Hamady M. and C.D. Hall. 2011. MN T-1-R-1, Wood Turtle survey. Final report to the U.S. Fish and Wildlife Service for State Wildlife Grant MN T-17-R-1.

Harding, J.H. and T.J. Bloomer. 1979. The Wood Turtle, *Clemmys insculpata*, a natural history. Bulletin of the New York Herpetological Society 15:10-26.

Harding, J.H. 1985. Clemmys insculpata. Predation-mutilation. Herpetological Review 16:30.

Harding, J.H. 1991. A 20-year Wood Turtle study in Michigan: implications for conservation. Proceedings of the First International Symposium on Turtles and Tortoises: Conservation and Captive Husbandry pp. 31-35.

Harding, J.H. 1997. Amphibians and reptiles of the Great Lakes region. University of Michigan Press, Ann Arbor, USA.

Heinselman, M.L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3:329-82.

Hines, J. 1999. 1999 Wood Turtle report. MNDNR Nongame Wildlife Program Report.

Hines, J. 2007. Wood Turtle Searches for 2007. MNDNR Nongame Wildlife Program Report.

Holman, H.L. 2004. Habitat use by juvenile and adult Wood Turtles in an agricultural landscape in southeastern Minnesota. Thesis, University of Minnesota, St. Paul, Minnesota.

Huston, K., M.M. Cochrane, Moen, R. 2018. Wood Turtle hibernacula characteristics in northeastern Minnesota. Natural Resources Research Institute, University of Minnesota Duluth. NRRI Technical Report No. NRRI/TR-2018-03.

Jones, M.T. 2009. Spatial ecology, population structure, and conservation of the Wood Turtle, *Glyptemys insculpta*, in central New England. Dissertation, University of Massachusetts, Amherst, USA.

Jones, M.T. and P.R. Sievert. 2009. Effects of stochastic flood disturbance on adult Wood Turtles, *Glyptemys insculpata*, in Massachusetts. Canadian Field-Naturalist 123(4):313-322.

Jones, M.T., L.L. Willey, T.S.B. Akre, and P.R. Sievert. 2015. Status and conservation of the Wood Turtle in the northeastern United States. Report submitted to the Northeast Association of Fish and Wildlife Agencies for Regional Conservation Needs Grant 2011-02.

Jones, M.T., H.P. Roberts, and L.L. Willey. 2018. Conservation Plan for the Wood Turtle in the Northeastern United States. Report to the Massachusetts Division of Fisheries & Wildlife and the U.S. Fish & Wildlife Service. 259 pp.

Kam, Y. 1994. Effects of simulated flooding on metabolism and water balance of turtle eggs and embryos. Journal of Herpetology 28(2):173-178.

Kaufmann, J.H. 1986. Stomping for earthworms by Wood Turtles, *Clemmys insculpta*: a newly discovered foraging technique. Copeia 4:1001-1004.

Kaufmann, J.H. 1992. Habitat use by Wood Turtles in central Pennsylvania. Journal of Herpetology 26:315-321.

Lapin, C., T. Bougie, and J. Woodford. 2016. Upper Midwest riverine turtle habitat improvement. Final project report for the Competitive State Wildlife Grant Program. Wisconsin Department of Natural Resources.

Lapin, C. N., J. Tamplin, M. M. Cochrane, J. E. Woodford, D. J. Brown, and R. A. Moen. 2019. A regional analysis of *Glyptemys insculpta* (Wood Turtle) survival at the western edge of their range. Herpetological Conservation and Biology 14:668-679.

Larson, K., and D. Anderson. 2016. Assessing the potential impacts of climate change on Minnesota Dwarf Trout Lily and Wood Turtle populations in the Southeast B River watershed of southeastern Minnesota. Division of Ecological and Water Resources, Minnesota Department of Natural Resources.

LeClere, J. 2013. A Field Guide to the Amphibians and Reptiles of Iowa. ECO Wea & Publishing, Rodeo, New Mexico, USA.

Lenhart, C., J.R. Naber, and J.L. Nieber. 2013. Impacts of hydrologic change on sandbar nesting availability for riverine turtles in eastern Minnesota, USA. Water 5:1243-1261.

Levell, J.P. 2000. Commercial exploitation of the Blanding's turtle, *Emydoidea blandingii*, and the Wood Turtle, *Clemmys insculpta*, for the live animal trade. Chelonian Conservation and Biology 3:665-674.

Ming-Cheng Adams, C.I., J.E. Baker, and B.V. Kjellerup. 2016. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States. Chemosphere 154:148-154.

MNDNR 2016. Minnesota's Wildlife Action Plan 2015-2025. Division of Ecological and Water Resources, Minnesota Department of Natural Resources. 72pp.

MNDNR 2018. Rare Species Guide [webpage], Minnesota Department of Natural Resources, Saint Paul, MN. https://www.dnr.state.mn.us/rsg/index.html

Minnesota Environmental Quality Board (MEQB). 1979. <u>Regional Copper-Nickel Study</u>. Minnesota State Planning Agency.

Mitchell, J.C., and M.W. Klemens. 2000. Primary and secondary effects of habitat alteration. In. M.W. Klemens (Ed.), Turtle Conservation. Smithsonian Institution Press, Washington, DC

Moen, R., M. M. Cochrane, and D. J. Brown. 2017. Wood Turtle population modeling. Final report prepared by the Natural Resources Research Institute for the Minnesota Department of Natural Resources. NRRI Technical Report No. NRRI/TR-2017-08.

Moriarty, J.J., and C.D. Hall. 2014. Amphibians and Reptiles in Minnesota. University of Minnesota Press, Minneapolis, Minnesota, USA.

Mullin, D.I. 2019. Evaluating the effectiveness of headstarting for Wood Turtle (*Glyptemys insculpta*) population recovery. Thesis, Laurentian University, Ontario, Canada.

Mullins, M. 2000. Final Report on MNDNR Special Permit No. 9263 and 1st Addendum to MNDNR Special Permit No. 9263.

Naber, J.R. 2001 Carlton County Wood Turtle study – Northeast K River Basin. Final report prepared by Emmons and Olivier Resources Inc. for the Minnesota Department of Natural Resources.

Naber, J.R. and M.J. Majeski. 2009. Wood Turtle surveys. Final report prepared by Emmons and Olivier Resources Inc. for the Minnesota Department of Natural Resources.

Naber, J.R. and M.J. Majeski. 2010. Wood Turtle surveys. Final report prepared by Emmons and Olivier Resources Inc. for the Minnesota Department of Natural Resources.

Naber, J.R. and M.J. Majeski. 2015. Northeast L River Wood Turtle nest site assessment and population survey. Final report prepared by Emmons and Olivier Resources Inc. for the Minnesota Department of Natural Resources.

Naber, J.R. and J. Ulrich. 2016. Riverine turtle flood inundation study. Final report prepared by Emmons and Olivier Resources Inc. for the Minnesota Department of Natural Resources.

Naber, J.R. and M.J. Majeski. 2017. RE: 2017 Southeast B River Wood Turtle Survey. Purchase Order ID Number: 3000110562. Prepared by Emmons and Olivier Resources Inc.

NatureServe. 2019. <u>NatureServe Explorer: An online encyclopedia of life</u>. Web application. Version 7.1. Accessed 01 April 2019.

Pappas, M.J, J.D. Congdon, B.J. Brecke. 2017. Orientation in five species of hatchling river turtles

dispersing from experimental nests. Chelonian Conservation and Biology 16(1):3-11.

Paterson, J.E., B.D. Steinberg, and J.D. Litzgus. 2012. Revealing a cryptic life-history stage: differences in habitat selection and survivorship between two turtle species at risk (*Glyptemys insculpta* and *Emydoidea blandingii*). Wildlife Research 39:408-418.

Powell, R., R. Conant, and J. T. Collins. 2016. A field guide to reptiles and amphibians: eastern and central North America. Fourth edition. Houghton Mifflin Company, New York, New York, USA.

Prange, S. and S.D. Gehrt. 2004. Changes in mesopredator-community structure in response to urbanization. Canadian Journal of Zoology 82(11):1804-1817.

Remsberg, A.J., T.L. Lewis, P.W. Huber, and K.A. Asmus. 2006. Home ranges of Wood Turtles (*Glyptemys insculpata*) in northern Michigan. Chelonian Conservation and Biology 5(1): 42-47.

Saumure, R.A., and J.R. Bider. 1998. Impact of agricultural development on a population of Wood Turtles (*Clemmys insculpta*) in southern Québec, Canada. Chelonian Conservation and Biology 3:37-45.

Saumure, R.A., T.B. Herman, and R.D. Titman. 2007. Effects of haying and agricultural practices on a declining species: the North American Wood Turtle, *Glyptemys insculpta*. Biological Conservation 135:581-591.

Schneider, A.C., T.W. Arnold, P.W. Huber, and T.L. Lewis. 2018. An 18-year mark-recapture study of Wood Turtles (*Glyptemys insculpata*) in Michigan. Journal of Herpetology 52(2):193-200.

Shelby-Walker, J.A., C.K. Ward, and M.T. Mendonca. 2009. Reproductive parameters in female yellow-blotched map turtles (*Graptemys flavimaculata*) from a historically contaminated site vs. a reference site. Comparative Biochemistry and Physiology – Part A, Molecular and Integrative Physiology 154(3):401-408.

Shepard, D.B., A.R. Kuhns, M.J. Dreslik, and C.A. Phillips. 2008. Roads as barriers to animal movement in fragmented landscapes. Animal Conservation 11(4):288-296.

Shuster, W.D., J. Bonta, H. Thurston, E. Warnemuende, and D.R. Smith. 2005. Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal 2(4):263-275.

Spradling, T.A. J.W. Tamplin, S.S. Dow, and K.J. Meyer. 2010. Conservation genetics of a peripherally isolated population of the Wood Turtle (*Glyptemys insculpata*) in Iowa. Conservation Genetics 11:1667-1677.

Steen, D.A., M.J. Aresco, S.G. Beilke, B.W. Compton, E.P. Condon, C. Kenneth Dodd Jr., H. Forrester, J.W. Gibbons, J.L. Greene, G. Johnson, T.A. Langen, M.J. Oldham, D.N. Oxier, R.A. Saumure, F.W. Schueler, J.M. Sleeman, L.L. Smith, J.K. Tucker, and J.P. Gibbs. 2006. Relative vulnerability of female turtles to road mortality. Animal Conservation 9:269-273.

Strickland, J.T. and F.J. Janzen. 2010. Impacts of anthropogenic structures on predation of painted turtle (*Chrysemys picta*) nests. Chelonian Conservation and Biology 9(1):131-135.

Tamplin, J.W. 2016. Upper Midwest turtle habitat improvement. Final report to the U.S. Fish and Wildlife Service for Iowa State Wildlife Grant.

Tamplin, J.W. 2019. Upper Midwest turtle conservation. Final report to the U.S. Fish and Wildlife Service for Iowa State Wildlife Grant.

Tingley, R. and T.B. Herman. 2008. The effects of agriculture and forestry on the distribution, movements and survival of Wood Turtles in an intensively managed landscape. Report prepared for the Nova Scotia Habitat Conservation Fund.

Tucker, J.K, N.I. Filoramo, and F.J. Janzen. 1999. Size-based mortality due to predation in a nesting freshwater turtle, *Trachemys scripta*. The American Midland Naturalist 141(1):198-203.

Tuttle, S.E., and D.M. Carroll. 2003. Home range and seasonal movements of the Wood Turtle (*Glyptemys insculpata*) in southern New Hampshire. Chelonian Conservation and Biology 4:656-663.

Tuttle, S.E. and D.M. Carroll. 2005. Movements and behavior of hatchling Wood Turtles (*Glyptemys insculpta*). Northeastern Naturalist 12(3):331-348.

Ultsch, G. 2006. The ecology of overwintering among turtles: where turtles overwinter and its consequences. Biological Reviews 81(3):339-367.

van Dijk, P.P. and J. Harding. 2011. <u>Glyptemys insculpta (errata version published in 2016)</u>. The IUCN Red List of Threatened Species: e.T4965A97416259.

Vogt, R.C. 1981. Turtle egg (Graptemys: Emydidae) infestation by fly larvae. Copeia 1981:457-459.

Walde, A.D., J.R. Bider, C. Daigle, D. Masse, J.C. Bourgeois, J. Jutras, and R.D. Titman. 2003. Ecological aspects of a Wood Turtle (*Glyptemys insculpta*) population at the northern limits of its range in Québec. Canadian Field Naturalist 117:377-388.

Walde, A.D., J.R. Bider, D. Masse, R.A. Saumure, and R.D. Titman. 2007. Nesting ecology and hatching success of the Wood Turtle, *Glyptemys insculpata*, in Québec. Herpetological Conservation and Biology 2(1):49-60.

Washington Department of Fish and Wildlife (WDFW). 2016. Western Pond Turtle Shell Disease in Washington. Accessed 27 June 2019.

Wesley, P.A. 2006. Local and regional habitat selection by Wood Turtles (*Glyptemys insculpata*) in Ontario. Thesis, University of Guelph, Ontario, Canada.

Williams, C.E. 2009. Occurrence of *Glyptemys insculpata* Le Conte in a stream impaired by abandoned mine drainage, Pennsylvania, USA. Herpetology Notes 2:133-136.

Willoughby, J.R., M. Sundaram, T. L. Lewis, and B.J. Swanson. 2013. Population decline in a long-lived species: the Wood Turtle in Michigan. Herpetolgica 69(2):186-198.

Wisconsin Department of Natural Resources (WDNR). 2015. Wisconsin Wood Turtle species guidance. Bureau of Natural Heritage Conservation, PUB-ER-684. Wisconsin Department of Natural Resources.

Wisconsin Department of Natural Resources (WDNR). 2016. Wisconsin Wood Turtle (*Glyptemys insculpta*) status assessment and conservation strategy. PUB NH-935 2016. Wisconsin Department of Natural Resources.

Woodburn, D.B., A.N. Miller, M.C. Allender, C.W. Maddox, K.A. Terio. 2019 *Emydomyces testavorans*, a new genus and species of onygenalean fungus isolated from shell lesions of freshwater aquatic turtles. Journal of Clinical Microbiology 57 (2) e00628-18. https://doi.org/10.1128/JCM.00628-18.